三层模型的相关性检验

IF 1.4 4区 数学 Q3 BIOLOGY
Anna Szczepańska-Álvarez, Adolfo Álvarez, Artur Szwengiel, Dietrich von Rosen
{"title":"三层模型的相关性检验","authors":"Anna Szczepańska-Álvarez, Adolfo Álvarez, Artur Szwengiel, Dietrich von Rosen","doi":"10.1007/s13253-023-00575-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a statistical approach to evaluate the relationship between variables observed in a two-factors experiment. We consider a three-level model with covariance structure <span>\\({\\varvec{\\Sigma }} \\otimes {\\varvec{\\Psi }}_1 \\otimes {\\varvec{\\Psi }}_2\\)</span>, where <span>\\({\\varvec{\\Sigma }}\\)</span> is an arbitrary positive definite covariance matrix, and <span>\\({\\varvec{\\Psi }}_1\\)</span> and <span>\\({\\varvec{\\Psi }}_2\\)</span> are both correlation matrices with a compound symmetric structure corresponding to two different factors. The Rao’s score test is used to test the hypotheses that observations grouped by one or two factors are uncorrelated. We analyze a fermentation process to illustrate the results. Supplementary materials accompanying this paper appear online.\n</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":"20 6","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing Correlation in a Three-Level Model\",\"authors\":\"Anna Szczepańska-Álvarez, Adolfo Álvarez, Artur Szwengiel, Dietrich von Rosen\",\"doi\":\"10.1007/s13253-023-00575-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we present a statistical approach to evaluate the relationship between variables observed in a two-factors experiment. We consider a three-level model with covariance structure <span>\\\\({\\\\varvec{\\\\Sigma }} \\\\otimes {\\\\varvec{\\\\Psi }}_1 \\\\otimes {\\\\varvec{\\\\Psi }}_2\\\\)</span>, where <span>\\\\({\\\\varvec{\\\\Sigma }}\\\\)</span> is an arbitrary positive definite covariance matrix, and <span>\\\\({\\\\varvec{\\\\Psi }}_1\\\\)</span> and <span>\\\\({\\\\varvec{\\\\Psi }}_2\\\\)</span> are both correlation matrices with a compound symmetric structure corresponding to two different factors. The Rao’s score test is used to test the hypotheses that observations grouped by one or two factors are uncorrelated. We analyze a fermentation process to illustrate the results. Supplementary materials accompanying this paper appear online.\\n</p>\",\"PeriodicalId\":56336,\"journal\":{\"name\":\"Journal of Agricultural Biological and Environmental Statistics\",\"volume\":\"20 6\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural Biological and Environmental Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13253-023-00575-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Biological and Environmental Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-023-00575-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种统计方法来评估在双因素实验中观察到的变量之间的关系。我们考虑一个具有协方差结构\({\varvec{\Sigma }} \otimes {\varvec{\Psi }}_1 \otimes {\varvec{\Psi }}_2\)的三层模型,其中\({\varvec{\Sigma }}\)是任意正定协方差矩阵,\({\varvec{\Psi }}_1\)和\({\varvec{\Psi }}_2\)都是复合对称结构的相关矩阵,对应于两个不同的因素。Rao分数检验是用来检验由一个或两个因素分组的观察结果不相关的假设。我们分析一个发酵过程来说明结果。本文附带的补充资料出现在网上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Testing Correlation in a Three-Level Model

Testing Correlation in a Three-Level Model

In this paper, we present a statistical approach to evaluate the relationship between variables observed in a two-factors experiment. We consider a three-level model with covariance structure \({\varvec{\Sigma }} \otimes {\varvec{\Psi }}_1 \otimes {\varvec{\Psi }}_2\), where \({\varvec{\Sigma }}\) is an arbitrary positive definite covariance matrix, and \({\varvec{\Psi }}_1\) and \({\varvec{\Psi }}_2\) are both correlation matrices with a compound symmetric structure corresponding to two different factors. The Rao’s score test is used to test the hypotheses that observations grouped by one or two factors are uncorrelated. We analyze a fermentation process to illustrate the results. Supplementary materials accompanying this paper appear online.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
38
审稿时长
>12 weeks
期刊介绍: The Journal of Agricultural, Biological and Environmental Statistics (JABES) publishes papers that introduce new statistical methods to solve practical problems in the agricultural sciences, the biological sciences (including biotechnology), and the environmental sciences (including those dealing with natural resources). Papers that apply existing methods in a novel context are also encouraged. Interdisciplinary papers and papers that illustrate the application of new and important statistical methods using real data are strongly encouraged. The journal does not normally publish papers that have a primary focus on human genetics, human health, or medical statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信