plicker嵌入表示$$\text {PU}(1,n)$$离散子群的极限集

Pub Date : 2023-12-02 DOI:10.1007/s00031-023-09829-w
Haremy Zuñiga
{"title":"plicker嵌入表示$$\\text {PU}(1,n)$$离散子群的极限集","authors":"Haremy Zuñiga","doi":"10.1007/s00031-023-09829-w","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\Gamma \\)</span> be a discrete subgroup of <span>\\(\\text {PU}(1,n)\\)</span>. In this work, we look at the induced action of <span>\\(\\Gamma \\)</span> on the projective space <span>\\(\\mathbb {P}(\\wedge ^{k+1}\\mathbb {C}^{n+1})\\)</span> by the Plücker embedding, where <span>\\(\\wedge ^{k+1}\\)</span> denotes the exterior power. We define a limit set for this action called the <i>k</i>-Chen-Greenberg limit set, which extends the classical definition of the Chen-Greenberg limit set <span>\\(L(\\Gamma )\\)</span>, and we show several of its properties. We prove that its Kulkarni limit set is the union taken over all <span>\\(p\\in L(\\Gamma )\\)</span> of the projective subspace generated by all <i>k</i>-planes that contain <i>p</i> or are contained in <span>\\(p^{\\perp }\\)</span> via the Plücker embedding. We also prove a duality between both limit sets.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Limit Set for Representations of Discrete Subgroups of $$\\\\text {PU}(1,n)$$ by the Plücker Embedding\",\"authors\":\"Haremy Zuñiga\",\"doi\":\"10.1007/s00031-023-09829-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\Gamma \\\\)</span> be a discrete subgroup of <span>\\\\(\\\\text {PU}(1,n)\\\\)</span>. In this work, we look at the induced action of <span>\\\\(\\\\Gamma \\\\)</span> on the projective space <span>\\\\(\\\\mathbb {P}(\\\\wedge ^{k+1}\\\\mathbb {C}^{n+1})\\\\)</span> by the Plücker embedding, where <span>\\\\(\\\\wedge ^{k+1}\\\\)</span> denotes the exterior power. We define a limit set for this action called the <i>k</i>-Chen-Greenberg limit set, which extends the classical definition of the Chen-Greenberg limit set <span>\\\\(L(\\\\Gamma )\\\\)</span>, and we show several of its properties. We prove that its Kulkarni limit set is the union taken over all <span>\\\\(p\\\\in L(\\\\Gamma )\\\\)</span> of the projective subspace generated by all <i>k</i>-planes that contain <i>p</i> or are contained in <span>\\\\(p^{\\\\perp }\\\\)</span> via the Plücker embedding. We also prove a duality between both limit sets.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-023-09829-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-023-09829-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设\(\Gamma \)为\(\text {PU}(1,n)\)的离散子群。在这项工作中,我们通过plicker嵌入来研究\(\Gamma \)对投影空间\(\mathbb {P}(\wedge ^{k+1}\mathbb {C}^{n+1})\)的诱导作用,其中\(\wedge ^{k+1}\)表示外部功率。我们为这个动作定义了一个极限集,称为k-Chen-Greenberg极限集,它扩展了Chen-Greenberg极限集的经典定义\(L(\Gamma )\),并展示了它的几个性质。我们证明了它的Kulkarni极限集是由包含p或包含在\(p^{\perp }\)中的所有k-平面生成的射影子空间的所有\(p\in L(\Gamma )\)的并集。我们还证明了两个极限集之间的对偶性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Limit Set for Representations of Discrete Subgroups of $$\text {PU}(1,n)$$ by the Plücker Embedding

Let \(\Gamma \) be a discrete subgroup of \(\text {PU}(1,n)\). In this work, we look at the induced action of \(\Gamma \) on the projective space \(\mathbb {P}(\wedge ^{k+1}\mathbb {C}^{n+1})\) by the Plücker embedding, where \(\wedge ^{k+1}\) denotes the exterior power. We define a limit set for this action called the k-Chen-Greenberg limit set, which extends the classical definition of the Chen-Greenberg limit set \(L(\Gamma )\), and we show several of its properties. We prove that its Kulkarni limit set is the union taken over all \(p\in L(\Gamma )\) of the projective subspace generated by all k-planes that contain p or are contained in \(p^{\perp }\) via the Plücker embedding. We also prove a duality between both limit sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信