David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, Mira Mezini
{"title":"Prisma:一种用于在分散应用程序中执行合约-客户端协议的无层语言","authors":"David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, Mira Mezini","doi":"https://dl.acm.org/doi/10.1145/3604629","DOIUrl":null,"url":null,"abstract":"<p>Decentralized applications (dApps) consist of smart contracts that run on blockchains and clients that model collaborating parties. dApps are used to model financial and legal business functionality. Today, contracts and clients are written as separate programs – in different programming languages – communicating via send and receive operations. This makes distributed program flow awkward to express and reason about, increasing the potential for mismatches in the client-contract interface, which can be exploited by malicious clients, potentially leading to huge financial losses. </p><p>In this paper, we present <sans-serif>Prisma</sans-serif>, a language for tierless decentralized applications, where the contract and its clients are defined in one unit and pairs of send and receive actions that “belong together” are encapsulated into a single direct-style operation, which is executed differently by sending and receiving parties. This enables expressing distributed program flow via standard control flow and renders mismatching communication impossible. We prove formally that our compiler preserves program behavior in presence of an attacker controlling the client code. We systematically compare <sans-serif>Prisma</sans-serif> with mainstream and advanced programming models for dApps and provide empirical evidence for its expressiveness and performance.</p>","PeriodicalId":50939,"journal":{"name":"ACM Transactions on Programming Languages and Systems","volume":"265 10","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications\",\"authors\":\"David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, Mira Mezini\",\"doi\":\"https://dl.acm.org/doi/10.1145/3604629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Decentralized applications (dApps) consist of smart contracts that run on blockchains and clients that model collaborating parties. dApps are used to model financial and legal business functionality. Today, contracts and clients are written as separate programs – in different programming languages – communicating via send and receive operations. This makes distributed program flow awkward to express and reason about, increasing the potential for mismatches in the client-contract interface, which can be exploited by malicious clients, potentially leading to huge financial losses. </p><p>In this paper, we present <sans-serif>Prisma</sans-serif>, a language for tierless decentralized applications, where the contract and its clients are defined in one unit and pairs of send and receive actions that “belong together” are encapsulated into a single direct-style operation, which is executed differently by sending and receiving parties. This enables expressing distributed program flow via standard control flow and renders mismatching communication impossible. We prove formally that our compiler preserves program behavior in presence of an attacker controlling the client code. We systematically compare <sans-serif>Prisma</sans-serif> with mainstream and advanced programming models for dApps and provide empirical evidence for its expressiveness and performance.</p>\",\"PeriodicalId\":50939,\"journal\":{\"name\":\"ACM Transactions on Programming Languages and Systems\",\"volume\":\"265 10\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Programming Languages and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3604629\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Programming Languages and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3604629","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications
Decentralized applications (dApps) consist of smart contracts that run on blockchains and clients that model collaborating parties. dApps are used to model financial and legal business functionality. Today, contracts and clients are written as separate programs – in different programming languages – communicating via send and receive operations. This makes distributed program flow awkward to express and reason about, increasing the potential for mismatches in the client-contract interface, which can be exploited by malicious clients, potentially leading to huge financial losses.
In this paper, we present Prisma, a language for tierless decentralized applications, where the contract and its clients are defined in one unit and pairs of send and receive actions that “belong together” are encapsulated into a single direct-style operation, which is executed differently by sending and receiving parties. This enables expressing distributed program flow via standard control flow and renders mismatching communication impossible. We prove formally that our compiler preserves program behavior in presence of an attacker controlling the client code. We systematically compare Prisma with mainstream and advanced programming models for dApps and provide empirical evidence for its expressiveness and performance.
期刊介绍:
ACM Transactions on Programming Languages and Systems (TOPLAS) is the premier journal for reporting recent research advances in the areas of programming languages, and systems to assist the task of programming. Papers can be either theoretical or experimental in style, but in either case, they must contain innovative and novel content that advances the state of the art of programming languages and systems. We also invite strictly experimental papers that compare existing approaches, as well as tutorial and survey papers. The scope of TOPLAS includes, but is not limited to, the following subjects:
language design for sequential and parallel programming
programming language implementation
programming language semantics
compilers and interpreters
runtime systems for program execution
storage allocation and garbage collection
languages and methods for writing program specifications
languages and methods for secure and reliable programs
testing and verification of programs