{"title":"对称Ising感知器的冻结1-RSB结构","authors":"Will Perkins, Changji Xu","doi":"10.1002/rsa.21202","DOIUrl":null,"url":null,"abstract":"We prove, under an assumption on the critical points of a real-valued function, that the symmetric Ising perceptron exhibits the ‘frozen 1-RSB’ structure conjectured by Krauth and Mézard in the physics literature; that is, typical solutions of the model lie in clusters of vanishing entropy density. Moreover, we prove this in a very strong form conjectured by Huang, Wong, and Kabashima: a typical solution of the model is isolated with high probability and the Hamming distance to all other solutions is linear in the dimension. The frozen 1-RSB scenario is part of a recent and intriguing explanation of the performance of learning algorithms by Baldassi, Ingrosso, Lucibello, Saglietti, and Zecchina. We prove this structural result by comparing the symmetric Ising perceptron model to a planted model and proving a comparison result between the two models. Our main technical tool towards this comparison is an inductive argument for the concentration of the logarithm of number of solutions in the model.","PeriodicalId":20948,"journal":{"name":"Random Structures and Algorithms","volume":"266 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frozen 1-RSB structure of the symmetric Ising perceptron\",\"authors\":\"Will Perkins, Changji Xu\",\"doi\":\"10.1002/rsa.21202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove, under an assumption on the critical points of a real-valued function, that the symmetric Ising perceptron exhibits the ‘frozen 1-RSB’ structure conjectured by Krauth and Mézard in the physics literature; that is, typical solutions of the model lie in clusters of vanishing entropy density. Moreover, we prove this in a very strong form conjectured by Huang, Wong, and Kabashima: a typical solution of the model is isolated with high probability and the Hamming distance to all other solutions is linear in the dimension. The frozen 1-RSB scenario is part of a recent and intriguing explanation of the performance of learning algorithms by Baldassi, Ingrosso, Lucibello, Saglietti, and Zecchina. We prove this structural result by comparing the symmetric Ising perceptron model to a planted model and proving a comparison result between the two models. Our main technical tool towards this comparison is an inductive argument for the concentration of the logarithm of number of solutions in the model.\",\"PeriodicalId\":20948,\"journal\":{\"name\":\"Random Structures and Algorithms\",\"volume\":\"266 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rsa.21202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Frozen 1-RSB structure of the symmetric Ising perceptron
We prove, under an assumption on the critical points of a real-valued function, that the symmetric Ising perceptron exhibits the ‘frozen 1-RSB’ structure conjectured by Krauth and Mézard in the physics literature; that is, typical solutions of the model lie in clusters of vanishing entropy density. Moreover, we prove this in a very strong form conjectured by Huang, Wong, and Kabashima: a typical solution of the model is isolated with high probability and the Hamming distance to all other solutions is linear in the dimension. The frozen 1-RSB scenario is part of a recent and intriguing explanation of the performance of learning algorithms by Baldassi, Ingrosso, Lucibello, Saglietti, and Zecchina. We prove this structural result by comparing the symmetric Ising perceptron model to a planted model and proving a comparison result between the two models. Our main technical tool towards this comparison is an inductive argument for the concentration of the logarithm of number of solutions in the model.