{"title":"在随机不规则子图上","authors":"Jacob Fox, Sammy Luo, Huy Tuan Pham","doi":"10.1002/rsa.21204","DOIUrl":null,"url":null,"abstract":"Let <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0001\" display=\"inline\" location=\"graphic/rsa21204-math-0001.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>G</mi>\n</mrow>\n$$ G $$</annotation>\n</semantics></math> be a <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0002\" display=\"inline\" location=\"graphic/rsa21204-math-0002.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>d</mi>\n</mrow>\n$$ d $$</annotation>\n</semantics></math>-regular graph on <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0003\" display=\"inline\" location=\"graphic/rsa21204-math-0003.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>n</mi>\n</mrow>\n$$ n $$</annotation>\n</semantics></math> vertices. Frieze, Gould, Karoński, and Pfender began the study of the following random spanning subgraph model <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0004\" display=\"inline\" location=\"graphic/rsa21204-math-0004.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<mo>=</mo>\n<mi>H</mi>\n<mo stretchy=\"false\">(</mo>\n<mi>G</mi>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n$$ H=H(G) $$</annotation>\n</semantics></math>. Assign independently to each vertex <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0005\" display=\"inline\" location=\"graphic/rsa21204-math-0005.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>v</mi>\n</mrow>\n$$ v $$</annotation>\n</semantics></math> of <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0006\" display=\"inline\" location=\"graphic/rsa21204-math-0006.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>G</mi>\n</mrow>\n$$ G $$</annotation>\n</semantics></math> a uniform random number <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0007\" display=\"inline\" location=\"graphic/rsa21204-math-0007.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>x</mi>\n<mo stretchy=\"false\">(</mo>\n<mi>v</mi>\n<mo stretchy=\"false\">)</mo>\n<mo>∈</mo>\n<mo stretchy=\"false\">[</mo>\n<mn>0</mn>\n<mo>,</mo>\n<mn>1</mn>\n<mo stretchy=\"false\">]</mo>\n</mrow>\n$$ x(v)\\in \\left[0,1\\right] $$</annotation>\n</semantics></math>, and an edge <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0008\" display=\"inline\" location=\"graphic/rsa21204-math-0008.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mo stretchy=\"false\">(</mo>\n<mi>u</mi>\n<mo>,</mo>\n<mi>v</mi>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n$$ \\left(u,v\\right) $$</annotation>\n</semantics></math> of <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0009\" display=\"inline\" location=\"graphic/rsa21204-math-0009.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>G</mi>\n</mrow>\n$$ G $$</annotation>\n</semantics></math> is an edge of <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0010\" display=\"inline\" location=\"graphic/rsa21204-math-0010.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>H</mi>\n</mrow>\n$$ H $$</annotation>\n</semantics></math> if and only if <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0011\" display=\"inline\" location=\"graphic/rsa21204-math-0011.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>x</mi>\n<mo stretchy=\"false\">(</mo>\n<mi>u</mi>\n<mo stretchy=\"false\">)</mo>\n<mo>+</mo>\n<mi>x</mi>\n<mo stretchy=\"false\">(</mo>\n<mi>v</mi>\n<mo stretchy=\"false\">)</mo>\n<mo>≥</mo>\n<mn>1</mn>\n</mrow>\n$$ x(u)+x(v)\\ge 1 $$</annotation>\n</semantics></math>. Addressing a problem of Alon and Wei, we prove that if <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0012\" display=\"inline\" location=\"graphic/rsa21204-math-0012.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>d</mi>\n<mo>=</mo>\n<mi>o</mi>\n<mo stretchy=\"false\">(</mo>\n<mi>n</mi>\n<mo stretchy=\"false\">/</mo>\n<msup>\n<mrow>\n<mo stretchy=\"false\">(</mo>\n<mi>log</mi>\n<mi>n</mi>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n<mrow>\n<mn>12</mn>\n</mrow>\n</msup>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n$$ d=o\\left(n/{\\left(\\log n\\right)}^{12}\\right) $$</annotation>\n</semantics></math>, then with high probability, for each nonnegative integer <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0013\" display=\"inline\" location=\"graphic/rsa21204-math-0013.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>k</mi>\n<mo>≤</mo>\n<mi>d</mi>\n</mrow>\n$$ k\\le d $$</annotation>\n</semantics></math>, there are <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0014\" display=\"inline\" location=\"graphic/rsa21204-math-0014.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mo stretchy=\"false\">(</mo>\n<mn>1</mn>\n<mo>+</mo>\n<mi>o</mi>\n<mo stretchy=\"false\">(</mo>\n<mn>1</mn>\n<mo stretchy=\"false\">)</mo>\n<mo stretchy=\"false\">)</mo>\n<mi>n</mi>\n<mo stretchy=\"false\">/</mo>\n<mo stretchy=\"false\">(</mo>\n<mi>d</mi>\n<mo>+</mo>\n<mn>1</mn>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n$$ \\left(1+o(1)\\right)n/\\left(d+1\\right) $$</annotation>\n</semantics></math> vertices of degree <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0015\" display=\"inline\" location=\"graphic/rsa21204-math-0015.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>k</mi>\n</mrow>\n$$ k $$</annotation>\n</semantics></math> in <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0016\" display=\"inline\" location=\"graphic/rsa21204-math-0016.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>H</mi>\n</mrow>\n$$ H $$</annotation>\n</semantics></math>.","PeriodicalId":20948,"journal":{"name":"Random Structures and Algorithms","volume":"276 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On random irregular subgraphs\",\"authors\":\"Jacob Fox, Sammy Luo, Huy Tuan Pham\",\"doi\":\"10.1002/rsa.21204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <math altimg=\\\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21204-math-0001.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>G</mi>\\n</mrow>\\n$$ G $$</annotation>\\n</semantics></math> be a <math altimg=\\\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21204-math-0002.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>d</mi>\\n</mrow>\\n$$ d $$</annotation>\\n</semantics></math>-regular graph on <math altimg=\\\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21204-math-0003.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>n</mi>\\n</mrow>\\n$$ n $$</annotation>\\n</semantics></math> vertices. Frieze, Gould, Karoński, and Pfender began the study of the following random spanning subgraph model <math altimg=\\\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0004\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21204-math-0004.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>H</mi>\\n<mo>=</mo>\\n<mi>H</mi>\\n<mo stretchy=\\\"false\\\">(</mo>\\n<mi>G</mi>\\n<mo stretchy=\\\"false\\\">)</mo>\\n</mrow>\\n$$ H=H(G) $$</annotation>\\n</semantics></math>. Assign independently to each vertex <math altimg=\\\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0005\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21204-math-0005.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>v</mi>\\n</mrow>\\n$$ v $$</annotation>\\n</semantics></math> of <math altimg=\\\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0006\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21204-math-0006.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>G</mi>\\n</mrow>\\n$$ G $$</annotation>\\n</semantics></math> a uniform random number <math altimg=\\\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0007\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21204-math-0007.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>x</mi>\\n<mo stretchy=\\\"false\\\">(</mo>\\n<mi>v</mi>\\n<mo stretchy=\\\"false\\\">)</mo>\\n<mo>∈</mo>\\n<mo stretchy=\\\"false\\\">[</mo>\\n<mn>0</mn>\\n<mo>,</mo>\\n<mn>1</mn>\\n<mo stretchy=\\\"false\\\">]</mo>\\n</mrow>\\n$$ x(v)\\\\in \\\\left[0,1\\\\right] $$</annotation>\\n</semantics></math>, and an edge <math altimg=\\\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0008\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21204-math-0008.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mo stretchy=\\\"false\\\">(</mo>\\n<mi>u</mi>\\n<mo>,</mo>\\n<mi>v</mi>\\n<mo stretchy=\\\"false\\\">)</mo>\\n</mrow>\\n$$ \\\\left(u,v\\\\right) $$</annotation>\\n</semantics></math> of <math altimg=\\\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0009\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21204-math-0009.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>G</mi>\\n</mrow>\\n$$ G $$</annotation>\\n</semantics></math> is an edge of <math altimg=\\\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0010\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21204-math-0010.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>H</mi>\\n</mrow>\\n$$ H $$</annotation>\\n</semantics></math> if and only if <math altimg=\\\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0011\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21204-math-0011.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>x</mi>\\n<mo stretchy=\\\"false\\\">(</mo>\\n<mi>u</mi>\\n<mo stretchy=\\\"false\\\">)</mo>\\n<mo>+</mo>\\n<mi>x</mi>\\n<mo stretchy=\\\"false\\\">(</mo>\\n<mi>v</mi>\\n<mo stretchy=\\\"false\\\">)</mo>\\n<mo>≥</mo>\\n<mn>1</mn>\\n</mrow>\\n$$ x(u)+x(v)\\\\ge 1 $$</annotation>\\n</semantics></math>. Addressing a problem of Alon and Wei, we prove that if <math altimg=\\\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0012\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21204-math-0012.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>d</mi>\\n<mo>=</mo>\\n<mi>o</mi>\\n<mo stretchy=\\\"false\\\">(</mo>\\n<mi>n</mi>\\n<mo stretchy=\\\"false\\\">/</mo>\\n<msup>\\n<mrow>\\n<mo stretchy=\\\"false\\\">(</mo>\\n<mi>log</mi>\\n<mi>n</mi>\\n<mo stretchy=\\\"false\\\">)</mo>\\n</mrow>\\n<mrow>\\n<mn>12</mn>\\n</mrow>\\n</msup>\\n<mo stretchy=\\\"false\\\">)</mo>\\n</mrow>\\n$$ d=o\\\\left(n/{\\\\left(\\\\log n\\\\right)}^{12}\\\\right) $$</annotation>\\n</semantics></math>, then with high probability, for each nonnegative integer <math altimg=\\\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0013\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21204-math-0013.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>k</mi>\\n<mo>≤</mo>\\n<mi>d</mi>\\n</mrow>\\n$$ k\\\\le d $$</annotation>\\n</semantics></math>, there are <math altimg=\\\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0014\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21204-math-0014.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mo stretchy=\\\"false\\\">(</mo>\\n<mn>1</mn>\\n<mo>+</mo>\\n<mi>o</mi>\\n<mo stretchy=\\\"false\\\">(</mo>\\n<mn>1</mn>\\n<mo stretchy=\\\"false\\\">)</mo>\\n<mo stretchy=\\\"false\\\">)</mo>\\n<mi>n</mi>\\n<mo stretchy=\\\"false\\\">/</mo>\\n<mo stretchy=\\\"false\\\">(</mo>\\n<mi>d</mi>\\n<mo>+</mo>\\n<mn>1</mn>\\n<mo stretchy=\\\"false\\\">)</mo>\\n</mrow>\\n$$ \\\\left(1+o(1)\\\\right)n/\\\\left(d+1\\\\right) $$</annotation>\\n</semantics></math> vertices of degree <math altimg=\\\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0015\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21204-math-0015.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>k</mi>\\n</mrow>\\n$$ k $$</annotation>\\n</semantics></math> in <math altimg=\\\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0016\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21204-math-0016.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>H</mi>\\n</mrow>\\n$$ H $$</annotation>\\n</semantics></math>.\",\"PeriodicalId\":20948,\"journal\":{\"name\":\"Random Structures and Algorithms\",\"volume\":\"276 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rsa.21204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设G $$ G $$是一个有n $$ n $$个顶点的d $$ d $$正则图。Frieze, Gould, Karoński和Pfender开始研究以下随机生成子图模型H=H(G) $$ H=H(G) $$。为G $$ G $$的每个顶点v $$ v $$独立分配一个均匀随机数x(v)∈[0,1]$$ x(v)\in \left[0,1\right] $$,并且当且仅当x(u)+x(v)≥1 $$ x(u)+x(v)\ge 1 $$时,G $$ G $$的边(u,v) $$ \left(u,v\right) $$就是H $$ H $$的边。针对Alon和Wei的问题,我们证明了如果d=o(n/(logn)12) $$ d=o\left(n/{\left(\log n\right)}^{12}\right) $$,那么对于每一个k≤d $$ k\le d $$的非负整数,H $$ H $$中有(1+o(1))n/(d+1) $$ \left(1+o(1)\right)n/\left(d+1\right) $$个k $$ k $$度的顶点。
Let be a -regular graph on vertices. Frieze, Gould, Karoński, and Pfender began the study of the following random spanning subgraph model . Assign independently to each vertex of a uniform random number , and an edge of is an edge of if and only if . Addressing a problem of Alon and Wei, we prove that if , then with high probability, for each nonnegative integer , there are vertices of degree in .