Giuseppe Greco, Peter Jipsen, Fei Liang, Alessandra Palmigiano, Apostolos Tzimoulis
{"title":"逻辑的代数证明理论","authors":"Giuseppe Greco, Peter Jipsen, Fei Liang, Alessandra Palmigiano, Apostolos Tzimoulis","doi":"10.1145/3632526","DOIUrl":null,"url":null,"abstract":"<p>In this paper we extend the research programme in algebraic proof theory from axiomatic extensions of the full Lambek calculus to logics algebraically captured by certain varieties of normal lattice expansions (normal LE-logics). Specifically, we generalise the <i>residuated frames</i> in [34] to arbitrary signatures of normal lattice expansions (LE). Such a generalization provides a valuable tool for proving important properties of LE-logics in full uniformity. We prove semantic cut elimination for the display calculi D.LE associated with the basic normal LE-logics and their axiomatic extensions with analytic inductive axioms. We also prove the finite model property (FMP) for each such calculus D.LE, as well as for its extensions with analytic structural rules satisfying certain additional properties.</p>","PeriodicalId":50916,"journal":{"name":"ACM Transactions on Computational Logic","volume":"40 5","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic proof theory for LE-logics\",\"authors\":\"Giuseppe Greco, Peter Jipsen, Fei Liang, Alessandra Palmigiano, Apostolos Tzimoulis\",\"doi\":\"10.1145/3632526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we extend the research programme in algebraic proof theory from axiomatic extensions of the full Lambek calculus to logics algebraically captured by certain varieties of normal lattice expansions (normal LE-logics). Specifically, we generalise the <i>residuated frames</i> in [34] to arbitrary signatures of normal lattice expansions (LE). Such a generalization provides a valuable tool for proving important properties of LE-logics in full uniformity. We prove semantic cut elimination for the display calculi D.LE associated with the basic normal LE-logics and their axiomatic extensions with analytic inductive axioms. We also prove the finite model property (FMP) for each such calculus D.LE, as well as for its extensions with analytic structural rules satisfying certain additional properties.</p>\",\"PeriodicalId\":50916,\"journal\":{\"name\":\"ACM Transactions on Computational Logic\",\"volume\":\"40 5\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computational Logic\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3632526\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computational Logic","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3632526","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
In this paper we extend the research programme in algebraic proof theory from axiomatic extensions of the full Lambek calculus to logics algebraically captured by certain varieties of normal lattice expansions (normal LE-logics). Specifically, we generalise the residuated frames in [34] to arbitrary signatures of normal lattice expansions (LE). Such a generalization provides a valuable tool for proving important properties of LE-logics in full uniformity. We prove semantic cut elimination for the display calculi D.LE associated with the basic normal LE-logics and their axiomatic extensions with analytic inductive axioms. We also prove the finite model property (FMP) for each such calculus D.LE, as well as for its extensions with analytic structural rules satisfying certain additional properties.
期刊介绍:
TOCL welcomes submissions related to all aspects of logic as it pertains to topics in computer science. This area has a great tradition in computer science. Several researchers who earned the ACM Turing award have also contributed to this field, namely Edgar Codd (relational database systems), Stephen Cook (complexity of logical theories), Edsger W. Dijkstra, Robert W. Floyd, Tony Hoare, Amir Pnueli, Dana Scott, Edmond M. Clarke, Allen E. Emerson, and Joseph Sifakis (program logics, program derivation and verification, programming languages semantics), Robin Milner (interactive theorem proving, concurrency calculi, and functional programming), and John McCarthy (functional programming and logics in AI).
Logic continues to play an important role in computer science and has permeated several of its areas, including artificial intelligence, computational complexity, database systems, and programming languages.
The Editorial Board of this journal seeks and hopes to attract high-quality submissions in all the above-mentioned areas of computational logic so that TOCL becomes the standard reference in the field.
Both theoretical and applied papers are sought. Submissions showing novel use of logic in computer science are especially welcome.