粗糙演化方程的不稳定流形

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Hongyan Ma, Hongjun Gao
{"title":"粗糙演化方程的不稳定流形","authors":"Hongyan Ma, Hongjun Gao","doi":"10.1142/s0219493722400330","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a class of rough nonlinear evolution equations driven by infinite-dimensional <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>γ</mi></math></span><span></span>-Hölder rough paths with <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>γ </mi><mi>∈ </mi><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">/</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">/</mo><mn>2</mn><mo stretchy=\"false\">]</mo></math></span><span></span>. First, we give a proper integral with respect to infinite-dimensional <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>γ</mi></math></span><span></span>-Hölder rough paths by using rough paths theory. Second, we obtain the global in time solution and random dynamical system of rough evolution equation. Finally, we derive the existence of local unstable manifolds for rough evolution equations by a properly discretized Lyapunov–Perron method.</p>","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":"253 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unstable manifolds for rough evolution equations\",\"authors\":\"Hongyan Ma, Hongjun Gao\",\"doi\":\"10.1142/s0219493722400330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider a class of rough nonlinear evolution equations driven by infinite-dimensional <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>γ</mi></math></span><span></span>-Hölder rough paths with <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>γ </mi><mi>∈ </mi><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><mo stretchy=\\\"false\\\">/</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo stretchy=\\\"false\\\">/</mo><mn>2</mn><mo stretchy=\\\"false\\\">]</mo></math></span><span></span>. First, we give a proper integral with respect to infinite-dimensional <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>γ</mi></math></span><span></span>-Hölder rough paths by using rough paths theory. Second, we obtain the global in time solution and random dynamical system of rough evolution equation. Finally, we derive the existence of local unstable manifolds for rough evolution equations by a properly discretized Lyapunov–Perron method.</p>\",\"PeriodicalId\":51170,\"journal\":{\"name\":\"Stochastics and Dynamics\",\"volume\":\"253 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219493722400330\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219493722400330","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑一类由无限维γ-Hölder粗糙路径驱动的粗糙非线性演化方程,其γ∈(1/3,1/2)。首先,利用粗糙路径理论给出了无限维γ-Hölder粗糙路径的固有积分。其次,我们得到了粗糙演化方程的全局时间解和随机动力系统。最后,利用适当离散的Lyapunov-Perron方法,导出了粗糙演化方程局部不稳定流形的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unstable manifolds for rough evolution equations

In this paper, we consider a class of rough nonlinear evolution equations driven by infinite-dimensional γ-Hölder rough paths with γ ∈ (1/3,1/2]. First, we give a proper integral with respect to infinite-dimensional γ-Hölder rough paths by using rough paths theory. Second, we obtain the global in time solution and random dynamical system of rough evolution equation. Finally, we derive the existence of local unstable manifolds for rough evolution equations by a properly discretized Lyapunov–Perron method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Dynamics
Stochastics and Dynamics 数学-统计学与概率论
CiteScore
1.70
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal is devoted to publishing high quality papers in modeling, analyzing, quantifying and predicting stochastic phenomena in science and engineering from a dynamical system''s point of view. Papers can be about theory, experiments, algorithms, numerical simulation and applications. Papers studying the dynamics of stochastic phenomena by means of random or stochastic ordinary, partial or functional differential equations or random mappings are particularly welcome, and so are studies of stochasticity in deterministic systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信