{"title":"粗糙演化方程的不稳定流形","authors":"Hongyan Ma, Hongjun Gao","doi":"10.1142/s0219493722400330","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a class of rough nonlinear evolution equations driven by infinite-dimensional <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>γ</mi></math></span><span></span>-Hölder rough paths with <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>γ </mi><mi>∈ </mi><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">/</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">/</mo><mn>2</mn><mo stretchy=\"false\">]</mo></math></span><span></span>. First, we give a proper integral with respect to infinite-dimensional <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>γ</mi></math></span><span></span>-Hölder rough paths by using rough paths theory. Second, we obtain the global in time solution and random dynamical system of rough evolution equation. Finally, we derive the existence of local unstable manifolds for rough evolution equations by a properly discretized Lyapunov–Perron method.</p>","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unstable manifolds for rough evolution equations\",\"authors\":\"Hongyan Ma, Hongjun Gao\",\"doi\":\"10.1142/s0219493722400330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider a class of rough nonlinear evolution equations driven by infinite-dimensional <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>γ</mi></math></span><span></span>-Hölder rough paths with <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>γ </mi><mi>∈ </mi><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><mo stretchy=\\\"false\\\">/</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo stretchy=\\\"false\\\">/</mo><mn>2</mn><mo stretchy=\\\"false\\\">]</mo></math></span><span></span>. First, we give a proper integral with respect to infinite-dimensional <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>γ</mi></math></span><span></span>-Hölder rough paths by using rough paths theory. Second, we obtain the global in time solution and random dynamical system of rough evolution equation. Finally, we derive the existence of local unstable manifolds for rough evolution equations by a properly discretized Lyapunov–Perron method.</p>\",\"PeriodicalId\":51170,\"journal\":{\"name\":\"Stochastics and Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219493722400330\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219493722400330","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
In this paper, we consider a class of rough nonlinear evolution equations driven by infinite-dimensional -Hölder rough paths with . First, we give a proper integral with respect to infinite-dimensional -Hölder rough paths by using rough paths theory. Second, we obtain the global in time solution and random dynamical system of rough evolution equation. Finally, we derive the existence of local unstable manifolds for rough evolution equations by a properly discretized Lyapunov–Perron method.
期刊介绍:
This interdisciplinary journal is devoted to publishing high quality papers in modeling, analyzing, quantifying and predicting stochastic phenomena in science and engineering from a dynamical system''s point of view.
Papers can be about theory, experiments, algorithms, numerical simulation and applications. Papers studying the dynamics of stochastic phenomena by means of random or stochastic ordinary, partial or functional differential equations or random mappings are particularly welcome, and so are studies of stochasticity in deterministic systems.