有限域中的Furstenberg集:对Ellenberg-Erman证明的解释和改进

Pub Date : 2023-11-29 DOI:10.1007/s00454-023-00585-y
Manik Dhar, Zeev Dvir, Ben Lund
{"title":"有限域中的Furstenberg集:对Ellenberg-Erman证明的解释和改进","authors":"Manik Dhar, Zeev Dvir, Ben Lund","doi":"10.1007/s00454-023-00585-y","DOIUrl":null,"url":null,"abstract":"<p>A (<i>k</i>, <i>m</i>)-Furstenberg set is a subset <span>\\(S \\subset {\\mathbb {F}}_q^n\\)</span> with the property that each <i>k</i>-dimensional subspace of <span>\\({\\mathbb {F}}_q^n\\)</span> can be translated so that it intersects <i>S</i> in at least <i>m</i> points. Ellenberg and Erman (Algebra Number Theory <b>10</b>(7), 1415–1436 (2016)) proved that (<i>k</i>, <i>m</i>)-Furstenberg sets must have size at least <span>\\(C_{n,k}m^{n/k}\\)</span>, where <span>\\(C_{n,k}\\)</span> is a constant depending only <i>n</i> and <i>k</i>. In this paper, we adopt the same proof strategy as Ellenberg and Erman, but use more elementary techniques than their scheme-theoretic method. By modifying certain parts of the argument, we obtain an improved bound on <span>\\(C_{n,k}\\)</span>, and our improved bound is nearly optimal for an algebraic generalization the main combinatorial result. We also extend our analysis to give lower bounds for sets that have large intersection with shifts of a specific family of higher-degree co-dimension <span>\\(n-k\\)</span> varieties, instead of just co-dimension <span>\\(n-k\\)</span> subspaces.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Furstenberg Sets in Finite Fields: Explaining and Improving the Ellenberg–Erman Proof\",\"authors\":\"Manik Dhar, Zeev Dvir, Ben Lund\",\"doi\":\"10.1007/s00454-023-00585-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A (<i>k</i>, <i>m</i>)-Furstenberg set is a subset <span>\\\\(S \\\\subset {\\\\mathbb {F}}_q^n\\\\)</span> with the property that each <i>k</i>-dimensional subspace of <span>\\\\({\\\\mathbb {F}}_q^n\\\\)</span> can be translated so that it intersects <i>S</i> in at least <i>m</i> points. Ellenberg and Erman (Algebra Number Theory <b>10</b>(7), 1415–1436 (2016)) proved that (<i>k</i>, <i>m</i>)-Furstenberg sets must have size at least <span>\\\\(C_{n,k}m^{n/k}\\\\)</span>, where <span>\\\\(C_{n,k}\\\\)</span> is a constant depending only <i>n</i> and <i>k</i>. In this paper, we adopt the same proof strategy as Ellenberg and Erman, but use more elementary techniques than their scheme-theoretic method. By modifying certain parts of the argument, we obtain an improved bound on <span>\\\\(C_{n,k}\\\\)</span>, and our improved bound is nearly optimal for an algebraic generalization the main combinatorial result. We also extend our analysis to give lower bounds for sets that have large intersection with shifts of a specific family of higher-degree co-dimension <span>\\\\(n-k\\\\)</span> varieties, instead of just co-dimension <span>\\\\(n-k\\\\)</span> subspaces.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00585-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00585-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

A (k, m)-Furstenberg集合是一个子集\(S \subset {\mathbb {F}}_q^n\),其性质是\({\mathbb {F}}_q^n\)的每个k维子空间都可以平移,使其与S相交至少m个点。Ellenberg和Erman(代数数论10(7),1415-1436(2016))证明(k, m)-Furstenberg集合必须至少具有\(C_{n,k}m^{n/k}\)的大小,其中\(C_{n,k}\)是仅依赖于n和k的常数。在本文中,我们采用了与Ellenberg和Erman相同的证明策略,但使用了比他们的方案理论方法更初级的技术。通过修改参数的某些部分,我们得到了\(C_{n,k}\)上的改进界,并且改进界对于主要组合结果的代数推广是几乎最优的。我们还扩展了我们的分析,给出了与特定高次协维\(n-k\)变体族的位移有大交集的集合的下界,而不仅仅是协维\(n-k\)子空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Furstenberg Sets in Finite Fields: Explaining and Improving the Ellenberg–Erman Proof

A (km)-Furstenberg set is a subset \(S \subset {\mathbb {F}}_q^n\) with the property that each k-dimensional subspace of \({\mathbb {F}}_q^n\) can be translated so that it intersects S in at least m points. Ellenberg and Erman (Algebra Number Theory 10(7), 1415–1436 (2016)) proved that (km)-Furstenberg sets must have size at least \(C_{n,k}m^{n/k}\), where \(C_{n,k}\) is a constant depending only n and k. In this paper, we adopt the same proof strategy as Ellenberg and Erman, but use more elementary techniques than their scheme-theoretic method. By modifying certain parts of the argument, we obtain an improved bound on \(C_{n,k}\), and our improved bound is nearly optimal for an algebraic generalization the main combinatorial result. We also extend our analysis to give lower bounds for sets that have large intersection with shifts of a specific family of higher-degree co-dimension \(n-k\) varieties, instead of just co-dimension \(n-k\) subspaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信