Akanksha Agrawal, Kristine V. K. Knudsen, Daniel Lokshtanov, Saket Saurabh, Meirav Zehavi
{"title":"保护近凸多边形的参数化复杂度","authors":"Akanksha Agrawal, Kristine V. K. Knudsen, Daniel Lokshtanov, Saket Saurabh, Meirav Zehavi","doi":"10.1007/s00454-023-00569-y","DOIUrl":null,"url":null,"abstract":"<p>The <span>Art</span> <span>Gallery</span> problem is a fundamental visibility problem in Computational Geometry. The input consists of a simple polygon <i>P</i>, (possibly infinite) sets <i>G</i> and <i>C</i> of points within <i>P</i>, and an integer <i>k</i>; the task is to decide if at most <i>k</i> guards can be placed on points in <i>G</i> so that every point in <i>C</i> is visible to at least one guard. In the classic formulation of <span>Art</span> <span>Gallery</span>, <i>G</i> and <i>C</i> consist of all the points within <i>P</i>. Other well-known variants restrict <i>G</i> and <i>C</i> to consist either of all the points on the boundary of <i>P</i> or of all the vertices of <i>P</i>. Recently, three new important discoveries were made: the above mentioned variants of <span>Art</span> <span>Gallery</span> are all W[1]-hard with respect to <i>k</i> [Bonnet and Miltzow in 24th Annual European Symposium on Algorithms (Aarhus 2016)], the classic variant has an <span>\\({{\\mathcal {O}}}(\\log k)\\)</span>-approximation algorithm [Bonnet and Miltzow in 33rd International Symposium on Computational Geometry (Brisbane 2017)], and it may require irrational guards [Abrahamsen et al. in 33rd International Symposium on Computational Geometry (Brisbane 2017)]. Building upon the third result, the classic variant and the case where <i>G</i> consists only of all the points on the boundary of <i>P</i> were both shown to be <span>\\(\\exists {\\mathbb {R}}\\)</span>-complete [Abrahamsen et al. in 50th Annual ACM SIGACT Symposium on Theory of Computing (Los Angeles 2018)]. Even when both <i>G</i> and <i>C</i> consist only of all the points on the boundary of <i>P</i>, the problem is not known to be in NP. Given the first discovery, the following question was posed by Giannopoulos [Lorentz Workshop on Fixed-Parameter Computational Geometry (Leiden 2016)]: Is <span>Art</span> <span>Gallery</span> FPT with respect to <i>r</i>, the number of reflex vertices? In light of the developments above, we focus on the variant where <i>G</i> and <i>C</i> consist of all the vertices of <i>P</i>, called <span>Vertex-Vertex</span> <span>Art</span> <span>Gallery</span>. Apart from being a variant of <span>Art</span> <span>Gallery</span>, this case can also be viewed as the classic <span>Dominating</span> <span>Set</span> problem in the visibility graph of a polygon. In this article, we show that the answer to the question by Giannopoulos is <i>positive</i>: <span>Vertex-Vertex</span> <span>Art</span> <span>Gallery</span> is solvable in time <span>\\(r^{{{\\mathcal {O}}}(r^2)}\\hspace{0.55542pt}{\\cdot }\\hspace{1.66656pt}n^{{{\\mathcal {O}}}(1)}\\)</span>. Furthermore, our approach extends to assert that <span>Vertex-Boundary</span> <span>Art</span> <span>Gallery</span> and <span>Boundary-Vertex</span> <span>Art</span> <span>Gallery</span> are both FPT as well. To this end, we utilize structural properties of “almost convex polygons” to present a two-stage reduction from <span>Vertex-Vertex</span> <span>Art</span> <span>Gallery</span> to a new constraint satisfaction problem (whose solution is also provided in this paper) where constraints have arity 2 and involve monotone functions.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Parameterized Complexity of Guarding Almost Convex Polygons\",\"authors\":\"Akanksha Agrawal, Kristine V. K. Knudsen, Daniel Lokshtanov, Saket Saurabh, Meirav Zehavi\",\"doi\":\"10.1007/s00454-023-00569-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The <span>Art</span> <span>Gallery</span> problem is a fundamental visibility problem in Computational Geometry. The input consists of a simple polygon <i>P</i>, (possibly infinite) sets <i>G</i> and <i>C</i> of points within <i>P</i>, and an integer <i>k</i>; the task is to decide if at most <i>k</i> guards can be placed on points in <i>G</i> so that every point in <i>C</i> is visible to at least one guard. In the classic formulation of <span>Art</span> <span>Gallery</span>, <i>G</i> and <i>C</i> consist of all the points within <i>P</i>. Other well-known variants restrict <i>G</i> and <i>C</i> to consist either of all the points on the boundary of <i>P</i> or of all the vertices of <i>P</i>. Recently, three new important discoveries were made: the above mentioned variants of <span>Art</span> <span>Gallery</span> are all W[1]-hard with respect to <i>k</i> [Bonnet and Miltzow in 24th Annual European Symposium on Algorithms (Aarhus 2016)], the classic variant has an <span>\\\\({{\\\\mathcal {O}}}(\\\\log k)\\\\)</span>-approximation algorithm [Bonnet and Miltzow in 33rd International Symposium on Computational Geometry (Brisbane 2017)], and it may require irrational guards [Abrahamsen et al. in 33rd International Symposium on Computational Geometry (Brisbane 2017)]. Building upon the third result, the classic variant and the case where <i>G</i> consists only of all the points on the boundary of <i>P</i> were both shown to be <span>\\\\(\\\\exists {\\\\mathbb {R}}\\\\)</span>-complete [Abrahamsen et al. in 50th Annual ACM SIGACT Symposium on Theory of Computing (Los Angeles 2018)]. Even when both <i>G</i> and <i>C</i> consist only of all the points on the boundary of <i>P</i>, the problem is not known to be in NP. Given the first discovery, the following question was posed by Giannopoulos [Lorentz Workshop on Fixed-Parameter Computational Geometry (Leiden 2016)]: Is <span>Art</span> <span>Gallery</span> FPT with respect to <i>r</i>, the number of reflex vertices? In light of the developments above, we focus on the variant where <i>G</i> and <i>C</i> consist of all the vertices of <i>P</i>, called <span>Vertex-Vertex</span> <span>Art</span> <span>Gallery</span>. Apart from being a variant of <span>Art</span> <span>Gallery</span>, this case can also be viewed as the classic <span>Dominating</span> <span>Set</span> problem in the visibility graph of a polygon. In this article, we show that the answer to the question by Giannopoulos is <i>positive</i>: <span>Vertex-Vertex</span> <span>Art</span> <span>Gallery</span> is solvable in time <span>\\\\(r^{{{\\\\mathcal {O}}}(r^2)}\\\\hspace{0.55542pt}{\\\\cdot }\\\\hspace{1.66656pt}n^{{{\\\\mathcal {O}}}(1)}\\\\)</span>. Furthermore, our approach extends to assert that <span>Vertex-Boundary</span> <span>Art</span> <span>Gallery</span> and <span>Boundary-Vertex</span> <span>Art</span> <span>Gallery</span> are both FPT as well. To this end, we utilize structural properties of “almost convex polygons” to present a two-stage reduction from <span>Vertex-Vertex</span> <span>Art</span> <span>Gallery</span> to a new constraint satisfaction problem (whose solution is also provided in this paper) where constraints have arity 2 and involve monotone functions.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00569-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00569-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
美术馆问题是计算几何中一个基本的可见性问题。输入包括一个简单的多边形P, P内点的集合G和C(可能是无限的),以及一个整数k;任务是决定是否可以在G中的点上放置最多k个守卫,以便C中的每个点至少有一个守卫可见。在Art Gallery的经典公式中,G和C由P内的所有点组成。其他著名的变体将G和C限制为由P边界上的所有点或P的所有顶点组成。上述Art Gallery的变体均为W[1]-hard相对于k [Bonnet and Miltzow in 24th Annual European Symposium on Algorithms (Aarhus 2016)],经典变体采用\({{\mathcal {O}}}(\log k)\) -近似算法[Bonnet and Miltzow in第33届国际计算几何研讨会(Brisbane 2017)],可能需要不合理的保护[Abrahamsen et al. in第33届国际计算几何研讨会(Brisbane 2017)]。在第三个结果的基础上,经典变体和G仅由P边界上的所有点组成的情况都被证明是\(\exists {\mathbb {R}}\) -完全的[Abrahamsen等人在第50届ACM SIGACT计算理论研讨会(洛杉矶2018)中]。即使当G和C仅由P边界上的所有点组成时,问题也不知道在NP中。鉴于第一个发现,Giannopoulos [Lorentz固定参数计算几何研讨会(Leiden 2016)]提出了以下问题:Art Gallery的FPT是否与反射顶点的数量r有关?根据上面的发展,我们关注G和C由P的所有顶点组成的变体,称为顶点顶点画廊。这种情况除了是Art Gallery的变体之外,还可以看作是多边形可见性图中的经典支配集问题。在本文中,我们证明了Giannopoulos问题的答案是肯定的:Vertex-Vertex Art Gallery在时间上是可解的\(r^{{{\mathcal {O}}}(r^2)}\hspace{0.55542pt}{\cdot }\hspace{1.66656pt}n^{{{\mathcal {O}}}(1)}\)。此外,我们的方法扩展到断言顶点边界艺术画廊和边界顶点艺术画廊都是FPT。为此,我们利用“几乎凸多边形”的结构性质,提出了从顶点-顶点艺术馆到一个新的约束满足问题的两阶段约简方法(本文也提供了该问题的解),该问题的约束数为2且涉及单调函数。
The Parameterized Complexity of Guarding Almost Convex Polygons
The ArtGallery problem is a fundamental visibility problem in Computational Geometry. The input consists of a simple polygon P, (possibly infinite) sets G and C of points within P, and an integer k; the task is to decide if at most k guards can be placed on points in G so that every point in C is visible to at least one guard. In the classic formulation of ArtGallery, G and C consist of all the points within P. Other well-known variants restrict G and C to consist either of all the points on the boundary of P or of all the vertices of P. Recently, three new important discoveries were made: the above mentioned variants of ArtGallery are all W[1]-hard with respect to k [Bonnet and Miltzow in 24th Annual European Symposium on Algorithms (Aarhus 2016)], the classic variant has an \({{\mathcal {O}}}(\log k)\)-approximation algorithm [Bonnet and Miltzow in 33rd International Symposium on Computational Geometry (Brisbane 2017)], and it may require irrational guards [Abrahamsen et al. in 33rd International Symposium on Computational Geometry (Brisbane 2017)]. Building upon the third result, the classic variant and the case where G consists only of all the points on the boundary of P were both shown to be \(\exists {\mathbb {R}}\)-complete [Abrahamsen et al. in 50th Annual ACM SIGACT Symposium on Theory of Computing (Los Angeles 2018)]. Even when both G and C consist only of all the points on the boundary of P, the problem is not known to be in NP. Given the first discovery, the following question was posed by Giannopoulos [Lorentz Workshop on Fixed-Parameter Computational Geometry (Leiden 2016)]: Is ArtGallery FPT with respect to r, the number of reflex vertices? In light of the developments above, we focus on the variant where G and C consist of all the vertices of P, called Vertex-VertexArtGallery. Apart from being a variant of ArtGallery, this case can also be viewed as the classic DominatingSet problem in the visibility graph of a polygon. In this article, we show that the answer to the question by Giannopoulos is positive: Vertex-VertexArtGallery is solvable in time \(r^{{{\mathcal {O}}}(r^2)}\hspace{0.55542pt}{\cdot }\hspace{1.66656pt}n^{{{\mathcal {O}}}(1)}\). Furthermore, our approach extends to assert that Vertex-BoundaryArtGallery and Boundary-VertexArtGallery are both FPT as well. To this end, we utilize structural properties of “almost convex polygons” to present a two-stage reduction from Vertex-VertexArtGallery to a new constraint satisfaction problem (whose solution is also provided in this paper) where constraints have arity 2 and involve monotone functions.