截断酉矩阵的特征值:磁盘计数统计

Yacin Ameur, Christophe Charlier, Philippe Moreillon
{"title":"截断酉矩阵的特征值:磁盘计数统计","authors":"Yacin Ameur, Christophe Charlier, Philippe Moreillon","doi":"10.1007/s00605-023-01920-4","DOIUrl":null,"url":null,"abstract":"<p>Let <i>T</i> be an <span>\\(n\\times n\\)</span> truncation of an <span>\\((n+\\alpha )\\times (n+\\alpha )\\)</span> Haar distributed unitary matrix. We consider the disk counting statistics of the eigenvalues of <i>T</i>. We prove that as <span>\\(n\\rightarrow + \\infty \\)</span> with <span>\\(\\alpha \\)</span> fixed, the associated moment generating function enjoys asymptotics of the form </p><span>$$\\begin{aligned} \\exp \\big ( C_{1} n + C_{2} + o(1) \\big ), \\end{aligned}$$</span><p>where the constants <span>\\(C_{1}\\)</span> and <span>\\(C_{2}\\)</span> are given in terms of the incomplete Gamma function. Our proof uses the uniform asymptotics of the incomplete Beta function.\n</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"6 9-10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Eigenvalues of truncated unitary matrices: disk counting statistics\",\"authors\":\"Yacin Ameur, Christophe Charlier, Philippe Moreillon\",\"doi\":\"10.1007/s00605-023-01920-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>T</i> be an <span>\\\\(n\\\\times n\\\\)</span> truncation of an <span>\\\\((n+\\\\alpha )\\\\times (n+\\\\alpha )\\\\)</span> Haar distributed unitary matrix. We consider the disk counting statistics of the eigenvalues of <i>T</i>. We prove that as <span>\\\\(n\\\\rightarrow + \\\\infty \\\\)</span> with <span>\\\\(\\\\alpha \\\\)</span> fixed, the associated moment generating function enjoys asymptotics of the form </p><span>$$\\\\begin{aligned} \\\\exp \\\\big ( C_{1} n + C_{2} + o(1) \\\\big ), \\\\end{aligned}$$</span><p>where the constants <span>\\\\(C_{1}\\\\)</span> and <span>\\\\(C_{2}\\\\)</span> are given in terms of the incomplete Gamma function. Our proof uses the uniform asymptotics of the incomplete Beta function.\\n</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":\"6 9-10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-023-01920-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-023-01920-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设T是\((n+\alpha )\times (n+\alpha )\) Haar分布酉矩阵的\(n\times n\)截断。我们考虑了t的特征值的盘计数统计。我们证明了当\(n\rightarrow + \infty \)与\(\alpha \)固定时,相关的矩生成函数具有$$\begin{aligned} \exp \big ( C_{1} n + C_{2} + o(1) \big ), \end{aligned}$$形式的渐近性,其中常数\(C_{1}\)和\(C_{2}\)是用不完全Gamma函数给出的。我们的证明使用了不完全函数的一致渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Eigenvalues of truncated unitary matrices: disk counting statistics

Eigenvalues of truncated unitary matrices: disk counting statistics

Let T be an \(n\times n\) truncation of an \((n+\alpha )\times (n+\alpha )\) Haar distributed unitary matrix. We consider the disk counting statistics of the eigenvalues of T. We prove that as \(n\rightarrow + \infty \) with \(\alpha \) fixed, the associated moment generating function enjoys asymptotics of the form

$$\begin{aligned} \exp \big ( C_{1} n + C_{2} + o(1) \big ), \end{aligned}$$

where the constants \(C_{1}\) and \(C_{2}\) are given in terms of the incomplete Gamma function. Our proof uses the uniform asymptotics of the incomplete Beta function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信