{"title":"悬浮液中磁旋流性能的预测","authors":"A. A. Lavrinenko, P. A. Sysa","doi":"10.1134/s1062739123040154","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A new device designed for wet magnetic separation—magnetic hydrocyclone—allows separating magnetic fraction from a fast and curved flow of pulp. The advantages of the magnetic hydrocyclone are the high specific output and the design simplicity which governs reliability of the device. The pattern of calculation of the magnetic hydrocyclonage performance represents an estimation of separability of magnetic fraction depending on the device geometry, variation in the magnetic field parameters, flow velocity and the physical parameters of the particles. The processing performance from calculations is compared with the results of the magnetic hydrocyclone testing. The proposed device is recommended to be included in the processing flow chart for ferruginous quartzite and other types of ore with the pronounced magnetic properties. Inclusion a magnetic system allowing higher magnetic induction up to 5–10 T in the flow chart makes it possible to extract weakly magnetic minerals.</p>","PeriodicalId":16358,"journal":{"name":"Journal of Mining Science","volume":"41 12","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Magnetic Hydrocyclonage Performance in Suspensions\",\"authors\":\"A. A. Lavrinenko, P. A. Sysa\",\"doi\":\"10.1134/s1062739123040154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A new device designed for wet magnetic separation—magnetic hydrocyclone—allows separating magnetic fraction from a fast and curved flow of pulp. The advantages of the magnetic hydrocyclone are the high specific output and the design simplicity which governs reliability of the device. The pattern of calculation of the magnetic hydrocyclonage performance represents an estimation of separability of magnetic fraction depending on the device geometry, variation in the magnetic field parameters, flow velocity and the physical parameters of the particles. The processing performance from calculations is compared with the results of the magnetic hydrocyclone testing. The proposed device is recommended to be included in the processing flow chart for ferruginous quartzite and other types of ore with the pronounced magnetic properties. Inclusion a magnetic system allowing higher magnetic induction up to 5–10 T in the flow chart makes it possible to extract weakly magnetic minerals.</p>\",\"PeriodicalId\":16358,\"journal\":{\"name\":\"Journal of Mining Science\",\"volume\":\"41 12\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1134/s1062739123040154\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s1062739123040154","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
Prediction of Magnetic Hydrocyclonage Performance in Suspensions
Abstract
A new device designed for wet magnetic separation—magnetic hydrocyclone—allows separating magnetic fraction from a fast and curved flow of pulp. The advantages of the magnetic hydrocyclone are the high specific output and the design simplicity which governs reliability of the device. The pattern of calculation of the magnetic hydrocyclonage performance represents an estimation of separability of magnetic fraction depending on the device geometry, variation in the magnetic field parameters, flow velocity and the physical parameters of the particles. The processing performance from calculations is compared with the results of the magnetic hydrocyclone testing. The proposed device is recommended to be included in the processing flow chart for ferruginous quartzite and other types of ore with the pronounced magnetic properties. Inclusion a magnetic system allowing higher magnetic induction up to 5–10 T in the flow chart makes it possible to extract weakly magnetic minerals.
期刊介绍:
The Journal reflects the current trends of development in fundamental and applied mining sciences. It publishes original articles on geomechanics and geoinformation science, investigation of relationships between global geodynamic processes and man-induced disasters, physical and mathematical modeling of rheological and wave processes in multiphase structural geological media, rock failure, analysis and synthesis of mechanisms, automatic machines, and robots, science of mining machines, creation of resource-saving and ecologically safe technologies of mineral mining, mine aerology and mine thermal physics, coal seam degassing, mechanisms for origination of spontaneous fires and methods for their extinction, mineral dressing, and bowel exploitation.