{"title":"环境协变量下Finlay-Wilkinson回归的扩展","authors":"Hans-Peter Piepho, Justin Blancon","doi":"10.1111/pbr.13130","DOIUrl":null,"url":null,"abstract":"Finlay–Wilkinson regression is a popular method for analysing genotype–environment interaction in series of plant breeding and variety trials. It involves a regression on the environmental mean, indexing the productivity of an environment, which is driven by a wide array of environmental factors. Increasingly, it is becoming feasible to characterize environments explicitly using observable environmental covariates. Hence, there is mounting interest to replace the environmental index with an explicit regression on such observable environmental covariates. This paper reviews the development of such methods. The focus is on parsimonious models that allow replacing the environmental index by regression on synthetic environmental covariates formed as linear combinations of a larger number of observable environmental covariates. Two new methods are proposed for obtaining such synthetic covariates, which may be integrated into genotype-specific regression models, that is, criss-cross regression and a factor-analytic approach. The main advantage of such explicit modelling is that predictions can be made also for new environments where trials have not been conducted. A published dataset is employed to illustrate the proposed methods.","PeriodicalId":20228,"journal":{"name":"Plant Breeding","volume":"52 ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extending Finlay–Wilkinson regression with environmental covariates\",\"authors\":\"Hans-Peter Piepho, Justin Blancon\",\"doi\":\"10.1111/pbr.13130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finlay–Wilkinson regression is a popular method for analysing genotype–environment interaction in series of plant breeding and variety trials. It involves a regression on the environmental mean, indexing the productivity of an environment, which is driven by a wide array of environmental factors. Increasingly, it is becoming feasible to characterize environments explicitly using observable environmental covariates. Hence, there is mounting interest to replace the environmental index with an explicit regression on such observable environmental covariates. This paper reviews the development of such methods. The focus is on parsimonious models that allow replacing the environmental index by regression on synthetic environmental covariates formed as linear combinations of a larger number of observable environmental covariates. Two new methods are proposed for obtaining such synthetic covariates, which may be integrated into genotype-specific regression models, that is, criss-cross regression and a factor-analytic approach. The main advantage of such explicit modelling is that predictions can be made also for new environments where trials have not been conducted. A published dataset is employed to illustrate the proposed methods.\",\"PeriodicalId\":20228,\"journal\":{\"name\":\"Plant Breeding\",\"volume\":\"52 \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Breeding\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/pbr.13130\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/pbr.13130","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Extending Finlay–Wilkinson regression with environmental covariates
Finlay–Wilkinson regression is a popular method for analysing genotype–environment interaction in series of plant breeding and variety trials. It involves a regression on the environmental mean, indexing the productivity of an environment, which is driven by a wide array of environmental factors. Increasingly, it is becoming feasible to characterize environments explicitly using observable environmental covariates. Hence, there is mounting interest to replace the environmental index with an explicit regression on such observable environmental covariates. This paper reviews the development of such methods. The focus is on parsimonious models that allow replacing the environmental index by regression on synthetic environmental covariates formed as linear combinations of a larger number of observable environmental covariates. Two new methods are proposed for obtaining such synthetic covariates, which may be integrated into genotype-specific regression models, that is, criss-cross regression and a factor-analytic approach. The main advantage of such explicit modelling is that predictions can be made also for new environments where trials have not been conducted. A published dataset is employed to illustrate the proposed methods.
期刊介绍:
PLANT BREEDING publishes full-length original manuscripts and review articles on all aspects of plant improvement, breeding methodologies, and genetics to include qualitative and quantitative inheritance and genomics of major crop species. PLANT BREEDING provides readers with cutting-edge information on use of molecular techniques and genomics as they relate to improving gain from selection. Since its subject matter embraces all aspects of crop improvement, its content is sought after by both industry and academia. Fields of interest: Genetics of cultivated plants as well as research in practical plant breeding.