哈密顿圆作用下广义Witten积分的渐近展开

Pub Date : 2022-06-08 DOI:10.4310/jsg.2021.v19.n6.a1
Benjamin Delarue, Pablo Ramacher
{"title":"哈密顿圆作用下广义Witten积分的渐近展开","authors":"Benjamin Delarue, Pablo Ramacher","doi":"10.4310/jsg.2021.v19.n6.a1","DOIUrl":null,"url":null,"abstract":"We derive a complete asymptotic expansion of generalized Witten integrals for Hamiltonian circle actions on arbitrary symplectic manifolds, characterizing the coefficients in the expansion as integrals over the symplectic strata of the corresponding Marsden–Weinstein reduced space and distributions on the Lie algebra. The obtained coefficients involve singular contributions of the lower-dimensional strata related to numerical invariants of the fixed-point set.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic expansion of generalized Witten integrals for Hamiltonian circle actions\",\"authors\":\"Benjamin Delarue, Pablo Ramacher\",\"doi\":\"10.4310/jsg.2021.v19.n6.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive a complete asymptotic expansion of generalized Witten integrals for Hamiltonian circle actions on arbitrary symplectic manifolds, characterizing the coefficients in the expansion as integrals over the symplectic strata of the corresponding Marsden–Weinstein reduced space and distributions on the Lie algebra. The obtained coefficients involve singular contributions of the lower-dimensional strata related to numerical invariants of the fixed-point set.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2021.v19.n6.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2021.v19.n6.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们导出了任意辛流形上哈密顿圆作用的广义Witten积分的完全渐近展开式,将展开式中的系数表征为相应的Marsden-Weinstein化简空间和Lie代数上分布的辛层上的积分。得到的系数涉及与不动点集的数值不变量有关的低维地层的奇异贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Asymptotic expansion of generalized Witten integrals for Hamiltonian circle actions
We derive a complete asymptotic expansion of generalized Witten integrals for Hamiltonian circle actions on arbitrary symplectic manifolds, characterizing the coefficients in the expansion as integrals over the symplectic strata of the corresponding Marsden–Weinstein reduced space and distributions on the Lie algebra. The obtained coefficients involve singular contributions of the lower-dimensional strata related to numerical invariants of the fixed-point set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信