一类具有半指数尾的相关随机变量的强逼近

Pub Date : 2023-12-06 DOI:10.1007/s10959-023-01306-0
Christophe Cuny, Jérôme Dedecker, Florence Merlevède
{"title":"一类具有半指数尾的相关随机变量的强逼近","authors":"Christophe Cuny, Jérôme Dedecker, Florence Merlevède","doi":"10.1007/s10959-023-01306-0","DOIUrl":null,"url":null,"abstract":"<p>We give rates of convergence in the almost sure invariance principle for sums of dependent random variables with semi-exponential tails, whose coupling coefficients decrease at a sub-exponential rate. We show that the rates in the strong invariance principle are in powers of <span>\\(\\log n\\)</span>. We apply our results to iid products of random matrices.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong Approximations for a Class of Dependent Random Variables with Semi-Exponential Tails\",\"authors\":\"Christophe Cuny, Jérôme Dedecker, Florence Merlevède\",\"doi\":\"10.1007/s10959-023-01306-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give rates of convergence in the almost sure invariance principle for sums of dependent random variables with semi-exponential tails, whose coupling coefficients decrease at a sub-exponential rate. We show that the rates in the strong invariance principle are in powers of <span>\\\\(\\\\log n\\\\)</span>. We apply our results to iid products of random matrices.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-023-01306-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-023-01306-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于耦合系数以次指数速率递减的半指数尾相依随机变量和,我们给出了其几乎确定不变原理下的收敛速率。我们证明了在强不变性原理中的速率是\(\log n\)的幂。我们将我们的结果应用于随机矩阵的id乘积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Strong Approximations for a Class of Dependent Random Variables with Semi-Exponential Tails

We give rates of convergence in the almost sure invariance principle for sums of dependent random variables with semi-exponential tails, whose coupling coefficients decrease at a sub-exponential rate. We show that the rates in the strong invariance principle are in powers of \(\log n\). We apply our results to iid products of random matrices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信