一类具有空间依赖分支机构的超布朗运动的极限分布

Pub Date : 2023-11-25 DOI:10.1007/s10959-023-01304-2
Yan-Xia Ren, Ting Yang
{"title":"一类具有空间依赖分支机构的超布朗运动的极限分布","authors":"Yan-Xia Ren, Ting Yang","doi":"10.1007/s10959-023-01304-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a large class of super-Brownian motions in <span>\\({\\mathbb {R}}\\)</span> with spatially dependent branching mechanisms. We establish the almost sure growth rate of the mass located outside a time-dependent interval <span>\\((-\\delta t,\\delta t)\\)</span> for <span>\\(\\delta &gt;0\\)</span>. The growth rate is given in terms of the principal eigenvalue <span>\\(\\lambda _{1}\\)</span> of the Schrödinger-type operator associated with the branching mechanism. From this result, we see the existence of phase transition for the growth order at <span>\\(\\delta =\\sqrt{\\lambda _{1}/2}\\)</span>. We further show that the super-Brownian motion shifted by <span>\\(\\sqrt{\\lambda _{1}/2}\\,t\\)</span> converges in distribution to a random measure with random density mixed by a martingale limit.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limiting Distributions for a Class of Super-Brownian Motions with Spatially Dependent Branching Mechanisms\",\"authors\":\"Yan-Xia Ren, Ting Yang\",\"doi\":\"10.1007/s10959-023-01304-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider a large class of super-Brownian motions in <span>\\\\({\\\\mathbb {R}}\\\\)</span> with spatially dependent branching mechanisms. We establish the almost sure growth rate of the mass located outside a time-dependent interval <span>\\\\((-\\\\delta t,\\\\delta t)\\\\)</span> for <span>\\\\(\\\\delta &gt;0\\\\)</span>. The growth rate is given in terms of the principal eigenvalue <span>\\\\(\\\\lambda _{1}\\\\)</span> of the Schrödinger-type operator associated with the branching mechanism. From this result, we see the existence of phase transition for the growth order at <span>\\\\(\\\\delta =\\\\sqrt{\\\\lambda _{1}/2}\\\\)</span>. We further show that the super-Brownian motion shifted by <span>\\\\(\\\\sqrt{\\\\lambda _{1}/2}\\\\,t\\\\)</span> converges in distribution to a random measure with random density mixed by a martingale limit.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-023-01304-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-023-01304-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了\({\mathbb {R}}\)中一类具有空间依赖分支机构的超布朗运动。对于\(\delta >0\),我们建立了位于时间相关区间\((-\delta t,\delta t)\)之外的质量几乎肯定的增长率。增长率用与分支机制相关的Schrödinger-type算子的主特征值\(\lambda _{1}\)给出。从这个结果可以看出,在\(\delta =\sqrt{\lambda _{1}/2}\)处的生长顺序存在相变。我们进一步证明了平移\(\sqrt{\lambda _{1}/2}\,t\)的超布朗运动在分布上收敛于随机密度由鞅极限混合的随机测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Limiting Distributions for a Class of Super-Brownian Motions with Spatially Dependent Branching Mechanisms

In this paper, we consider a large class of super-Brownian motions in \({\mathbb {R}}\) with spatially dependent branching mechanisms. We establish the almost sure growth rate of the mass located outside a time-dependent interval \((-\delta t,\delta t)\) for \(\delta >0\). The growth rate is given in terms of the principal eigenvalue \(\lambda _{1}\) of the Schrödinger-type operator associated with the branching mechanism. From this result, we see the existence of phase transition for the growth order at \(\delta =\sqrt{\lambda _{1}/2}\). We further show that the super-Brownian motion shifted by \(\sqrt{\lambda _{1}/2}\,t\) converges in distribution to a random measure with random density mixed by a martingale limit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信