$$L^p$$ - $$L^q$$与非谐振子相关的傅里叶乘法器的有界性

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Marianna Chatzakou, Vishvesh Kumar
{"title":"$$L^p$$ - $$L^q$$与非谐振子相关的傅里叶乘法器的有界性","authors":"Marianna Chatzakou, Vishvesh Kumar","doi":"10.1007/s00041-023-10047-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the <span>\\(L^p\\)</span>-<span>\\(L^q\\)</span> boundedness of the Fourier multipliers in the setting where the underlying Fourier analysis is introduced with respect to the eigenfunctions of an anharmonic oscillator <i>A</i>. Using the notion of a global symbol that arises from this analysis, we extend a version of the Hausdorff–Young–Paley inequality that guarantees the <span>\\(L^p\\)</span>-<span>\\(L^q\\)</span> boundedness of these operators for the range <span>\\(1&lt;p \\le 2 \\le q &lt;\\infty \\)</span>. The boundedness results for spectral multipliers acquired, yield as particular cases Sobolev embedding theorems and time asymptotics for the <span>\\(L^p\\)</span>-<span>\\(L^q\\)</span> norms of the heat kernel associated with the anharmonic oscillator. Additionally, we consider functions <i>f</i>(<i>A</i>) of the anharmonic oscillator on modulation spaces and prove that Linskĭi’s trace formula holds true even when <i>f</i>(<i>A</i>) is simply a nuclear operator.</p>","PeriodicalId":15993,"journal":{"name":"Journal of Fourier Analysis and Applications","volume":"691 10","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"$$L^p$$ - $$L^q$$ Boundedness of Fourier Multipliers Associated with the Anharmonic Oscillator\",\"authors\":\"Marianna Chatzakou, Vishvesh Kumar\",\"doi\":\"10.1007/s00041-023-10047-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study the <span>\\\\(L^p\\\\)</span>-<span>\\\\(L^q\\\\)</span> boundedness of the Fourier multipliers in the setting where the underlying Fourier analysis is introduced with respect to the eigenfunctions of an anharmonic oscillator <i>A</i>. Using the notion of a global symbol that arises from this analysis, we extend a version of the Hausdorff–Young–Paley inequality that guarantees the <span>\\\\(L^p\\\\)</span>-<span>\\\\(L^q\\\\)</span> boundedness of these operators for the range <span>\\\\(1&lt;p \\\\le 2 \\\\le q &lt;\\\\infty \\\\)</span>. The boundedness results for spectral multipliers acquired, yield as particular cases Sobolev embedding theorems and time asymptotics for the <span>\\\\(L^p\\\\)</span>-<span>\\\\(L^q\\\\)</span> norms of the heat kernel associated with the anharmonic oscillator. Additionally, we consider functions <i>f</i>(<i>A</i>) of the anharmonic oscillator on modulation spaces and prove that Linskĭi’s trace formula holds true even when <i>f</i>(<i>A</i>) is simply a nuclear operator.</p>\",\"PeriodicalId\":15993,\"journal\":{\"name\":\"Journal of Fourier Analysis and Applications\",\"volume\":\"691 10\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fourier Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00041-023-10047-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fourier Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00041-023-10047-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们研究了在对非谐振子a的特征函数引入基本傅里叶分析的情况下傅里叶乘子的\(L^p\) - \(L^q\)有界性。利用由此分析产生的全局符号的概念,我们扩展了Hausdorff-Young-Paley不等式的一个版本,该版本保证了这些算子在\(1<p \le 2 \le q <\infty \)范围内的\(L^p\) - \(L^q\)有界性。所获得的谱乘子的有界性结果,作为特殊情况,产生了Sobolev嵌入定理和与非谐振子相关的热核的\(L^p\) - \(L^q\)范数的时间渐近性。此外,我们考虑了调制空间上非谐振子的函数f(A),并证明了Linskĭi的示踪公式即使f(A)是一个简单的核算子也成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$$L^p$$ - $$L^q$$ Boundedness of Fourier Multipliers Associated with the Anharmonic Oscillator

In this paper we study the \(L^p\)-\(L^q\) boundedness of the Fourier multipliers in the setting where the underlying Fourier analysis is introduced with respect to the eigenfunctions of an anharmonic oscillator A. Using the notion of a global symbol that arises from this analysis, we extend a version of the Hausdorff–Young–Paley inequality that guarantees the \(L^p\)-\(L^q\) boundedness of these operators for the range \(1<p \le 2 \le q <\infty \). The boundedness results for spectral multipliers acquired, yield as particular cases Sobolev embedding theorems and time asymptotics for the \(L^p\)-\(L^q\) norms of the heat kernel associated with the anharmonic oscillator. Additionally, we consider functions f(A) of the anharmonic oscillator on modulation spaces and prove that Linskĭi’s trace formula holds true even when f(A) is simply a nuclear operator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
16.70%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The Journal of Fourier Analysis and Applications will publish results in Fourier analysis, as well as applicable mathematics having a significant Fourier analytic component. Appropriate manuscripts at the highest research level will be accepted for publication. Because of the extensive, intricate, and fundamental relationship between Fourier analysis and so many other subjects, selected and readable surveys will also be published. These surveys will include historical articles, research tutorials, and expositions of specific topics. TheJournal of Fourier Analysis and Applications will provide a perspective and means for centralizing and disseminating new information from the vantage point of Fourier analysis. The breadth of Fourier analysis and diversity of its applicability require that each paper should contain a clear and motivated introduction, which is accessible to all of our readers. Areas of applications include the following: antenna theory * crystallography * fast algorithms * Gabor theory and applications * image processing * number theory * optics * partial differential equations * prediction theory * radar applications * sampling theory * spectral estimation * speech processing * stochastic processes * time-frequency analysis * time series * tomography * turbulence * uncertainty principles * wavelet theory and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信