基于spark的实时主动图像跟踪保护模型

IF 2.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yahong Hu, Xia Sheng, Jiafa Mao, Kaihui Wang, Danhong Zhong
{"title":"基于spark的实时主动图像跟踪保护模型","authors":"Yahong Hu, Xia Sheng, Jiafa Mao, Kaihui Wang, Danhong Zhong","doi":"10.1186/s13635-019-0086-2","DOIUrl":null,"url":null,"abstract":"With rapid development of the Internet, images are spreading more and more quickly and widely. The phenomenon of image illegal usage emerges frequently, and this has marked impacts on people’s normal life. Therefore, it is of great importance to protect image security and image owner’s rights. At present, most image protection is passive. Most of the time, only when the images had been used illegally and serious adverse consequences had appeared did the image owners discover it. In this paper, a Spark-based real-time proactive image tracking protection model (SRPITP) is proposed to monitor the status of images under protection in real time. Whenever illegal use is found, an alert will be issued to image owners. The model mainly includes image fingerprint extraction module, image crawling module, and image matching module. The experimental results show that in SRPITP, the image matching accuracy rate is above 98.9%, and compared with its stand-alone counterpart, the corresponding time reduction for image extraction and matching are about 58.78% and 61.67%.","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":"178 1","pages":"1-8"},"PeriodicalIF":2.5000,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spark-based real-time proactive image tracking protection model\",\"authors\":\"Yahong Hu, Xia Sheng, Jiafa Mao, Kaihui Wang, Danhong Zhong\",\"doi\":\"10.1186/s13635-019-0086-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With rapid development of the Internet, images are spreading more and more quickly and widely. The phenomenon of image illegal usage emerges frequently, and this has marked impacts on people’s normal life. Therefore, it is of great importance to protect image security and image owner’s rights. At present, most image protection is passive. Most of the time, only when the images had been used illegally and serious adverse consequences had appeared did the image owners discover it. In this paper, a Spark-based real-time proactive image tracking protection model (SRPITP) is proposed to monitor the status of images under protection in real time. Whenever illegal use is found, an alert will be issued to image owners. The model mainly includes image fingerprint extraction module, image crawling module, and image matching module. The experimental results show that in SRPITP, the image matching accuracy rate is above 98.9%, and compared with its stand-alone counterpart, the corresponding time reduction for image extraction and matching are about 58.78% and 61.67%.\",\"PeriodicalId\":46070,\"journal\":{\"name\":\"EURASIP Journal on Information Security\",\"volume\":\"178 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2019-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Information Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13635-019-0086-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13635-019-0086-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

随着互联网的快速发展,图像传播的速度越来越快,范围越来越广。图像非法使用现象层出不穷,对人们的正常生活造成了明显的影响。因此,保护图像安全和图像所有者的权利是非常重要的。目前,大多数图像保护是被动的。大多数情况下,只有当图像被非法使用,并出现严重的不良后果时,图像所有者才会发现。本文提出了一种基于spark的实时主动图像跟踪保护模型(SRPITP),用于实时监测被保护图像的状态。一旦发现非法使用,将向图像所有者发出警告。该模型主要包括图像指纹提取模块、图像抓取模块和图像匹配模块。实验结果表明,在SRPITP中,图像匹配正确率达到98.9%以上,与单机相比,相应的图像提取和匹配时间分别减少了58.78%和61.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spark-based real-time proactive image tracking protection model
With rapid development of the Internet, images are spreading more and more quickly and widely. The phenomenon of image illegal usage emerges frequently, and this has marked impacts on people’s normal life. Therefore, it is of great importance to protect image security and image owner’s rights. At present, most image protection is passive. Most of the time, only when the images had been used illegally and serious adverse consequences had appeared did the image owners discover it. In this paper, a Spark-based real-time proactive image tracking protection model (SRPITP) is proposed to monitor the status of images under protection in real time. Whenever illegal use is found, an alert will be issued to image owners. The model mainly includes image fingerprint extraction module, image crawling module, and image matching module. The experimental results show that in SRPITP, the image matching accuracy rate is above 98.9%, and compared with its stand-alone counterpart, the corresponding time reduction for image extraction and matching are about 58.78% and 61.67%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EURASIP Journal on Information Security
EURASIP Journal on Information Security COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
8.80
自引率
0.00%
发文量
6
审稿时长
13 weeks
期刊介绍: The overall goal of the EURASIP Journal on Information Security, sponsored by the European Association for Signal Processing (EURASIP), is to bring together researchers and practitioners dealing with the general field of information security, with a particular emphasis on the use of signal processing tools in adversarial environments. As such, it addresses all works whereby security is achieved through a combination of techniques from cryptography, computer security, machine learning and multimedia signal processing. Application domains lie, for example, in secure storage, retrieval and tracking of multimedia data, secure outsourcing of computations, forgery detection of multimedia data, or secure use of biometrics. The journal also welcomes survey papers that give the reader a gentle introduction to one of the topics covered as well as papers that report large-scale experimental evaluations of existing techniques. Pure cryptographic papers are outside the scope of the journal. Topics relevant to the journal include, but are not limited to: • Multimedia security primitives (such digital watermarking, perceptual hashing, multimedia authentictaion) • Steganography and Steganalysis • Fingerprinting and traitor tracing • Joint signal processing and encryption, signal processing in the encrypted domain, applied cryptography • Biometrics (fusion, multimodal biometrics, protocols, security issues) • Digital forensics • Multimedia signal processing approaches tailored towards adversarial environments • Machine learning in adversarial environments • Digital Rights Management • Network security (such as physical layer security, intrusion detection) • Hardware security, Physical Unclonable Functions • Privacy-Enhancing Technologies for multimedia data • Private data analysis, security in outsourced computations, cloud privacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信