{"title":"广义Abel方程及其在平移不变Radon变换中的应用","authors":"James W. Webber","doi":"10.1515/jiip-2023-0049","DOIUrl":null,"url":null,"abstract":"Generalized Abel equations have been employed in the recent literature to invert Radon transforms which arise in a number of important imaging applications, including Compton Scatter Tomography (CST), Ultrasound Reflection Tomography (URT), and X-ray CT. In this paper, we present novel injectivity results and inversion methods for generalized Abel operators. We apply our theory to a new Radon transform, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"script\">R</m:mi> <m:mi>j</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0049_ineq_0001.png\" /> <jats:tex-math>\\mathcal{R}_{j}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, of interest in URT, which integrates a square integrable function of compact support, 𝑓, over ellipsoid and hyperboloid surfaces with centers on a plane. Using our newly established theory on generalized Abel equations, we show that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"script\">R</m:mi> <m:mi>j</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0049_ineq_0001.png\" /> <jats:tex-math>\\mathcal{R}_{j}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is injective and provide an inversion method based on Neumann series. In addition, using algebraic methods, we present image phantom reconstructions from <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">R</m:mi> <m:mi>j</m:mi> </m:msub> <m:mo></m:mo> <m:mi>f</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0049_ineq_0003.png\" /> <jats:tex-math>\\mathcal{R}_{j}f</jats:tex-math> </jats:alternatives> </jats:inline-formula> data with added pseudo-random noise.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"193 ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Abel equations and applications to translation invariant Radon transforms\",\"authors\":\"James W. Webber\",\"doi\":\"10.1515/jiip-2023-0049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalized Abel equations have been employed in the recent literature to invert Radon transforms which arise in a number of important imaging applications, including Compton Scatter Tomography (CST), Ultrasound Reflection Tomography (URT), and X-ray CT. In this paper, we present novel injectivity results and inversion methods for generalized Abel operators. We apply our theory to a new Radon transform, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi mathvariant=\\\"script\\\">R</m:mi> <m:mi>j</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0049_ineq_0001.png\\\" /> <jats:tex-math>\\\\mathcal{R}_{j}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, of interest in URT, which integrates a square integrable function of compact support, 𝑓, over ellipsoid and hyperboloid surfaces with centers on a plane. Using our newly established theory on generalized Abel equations, we show that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi mathvariant=\\\"script\\\">R</m:mi> <m:mi>j</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0049_ineq_0001.png\\\" /> <jats:tex-math>\\\\mathcal{R}_{j}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is injective and provide an inversion method based on Neumann series. In addition, using algebraic methods, we present image phantom reconstructions from <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi mathvariant=\\\"script\\\">R</m:mi> <m:mi>j</m:mi> </m:msub> <m:mo></m:mo> <m:mi>f</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0049_ineq_0003.png\\\" /> <jats:tex-math>\\\\mathcal{R}_{j}f</jats:tex-math> </jats:alternatives> </jats:inline-formula> data with added pseudo-random noise.\",\"PeriodicalId\":50171,\"journal\":{\"name\":\"Journal of Inverse and Ill-Posed Problems\",\"volume\":\"193 \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inverse and Ill-Posed Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jiip-2023-0049\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2023-0049","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在最近的文献中,广义阿贝尔方程被用来反演Radon变换,Radon变换出现在许多重要的成像应用中,包括康普顿散射层析成像(CST)、超声反射层析成像(URT)和x射线CT。本文给出了广义Abel算子新的注入性结果和反演方法。我们将我们的理论应用于一个新的Radon变换,R j \mathcal{R}_{j},在URT中,它对紧支撑的平方可积函数𝑓在椭球面和双曲面上的中心在一个平面上进行积分。利用新建立的广义Abel方程理论,证明了rj \mathcal{R}_{j}是内射的,并给出了基于Neumann级数的反演方法。此外,利用代数方法,我们提出了从rj _ f \mathcal{R}_{j}f数据中加入伪随机噪声重建图像的方法。
Generalized Abel equations and applications to translation invariant Radon transforms
Generalized Abel equations have been employed in the recent literature to invert Radon transforms which arise in a number of important imaging applications, including Compton Scatter Tomography (CST), Ultrasound Reflection Tomography (URT), and X-ray CT. In this paper, we present novel injectivity results and inversion methods for generalized Abel operators. We apply our theory to a new Radon transform, Rj\mathcal{R}_{j}, of interest in URT, which integrates a square integrable function of compact support, 𝑓, over ellipsoid and hyperboloid surfaces with centers on a plane. Using our newly established theory on generalized Abel equations, we show that Rj\mathcal{R}_{j} is injective and provide an inversion method based on Neumann series. In addition, using algebraic methods, we present image phantom reconstructions from Rjf\mathcal{R}_{j}f data with added pseudo-random noise.
期刊介绍:
This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published.
Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest.
The following topics are covered:
Inverse problems
existence and uniqueness theorems
stability estimates
optimization and identification problems
numerical methods
Ill-posed problems
regularization theory
operator equations
integral geometry
Applications
inverse problems in geophysics, electrodynamics and acoustics
inverse problems in ecology
inverse and ill-posed problems in medicine
mathematical problems of tomography