Ryan Alweiss, Shachar Lovett, Kewen Wu, Jiapeng Zhang
{"title":"向日葵引理的改进界|数学年鉴","authors":"Ryan Alweiss, Shachar Lovett, Kewen Wu, Jiapeng Zhang","doi":"10.4007/annals.2021.194.3.5","DOIUrl":null,"url":null,"abstract":"<p> A sunflower with $r$ petals is a collection of $r$ sets so that the intersection of each pair is equal to the intersection of all of them. Erdős and Rado proved the sunflower lemma: for any fixed $r$, any family of sets of size $w$, with at least about $w^w$ sets, must contain a sunflower with $r$ petals. The famous sunflower conjecture states that the bound on the number of sets can be improved to $c^w$ for some constant $c$. In this paper, we improve the bound to about $(\\log\\, w)^w$. In fact, we prove the result for a robust notion of sunflowers, for which the bound we obtain is sharp up to lower order terms. </p>","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":"589 ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved bounds for the sunflower lemma | Annals of Mathematics\",\"authors\":\"Ryan Alweiss, Shachar Lovett, Kewen Wu, Jiapeng Zhang\",\"doi\":\"10.4007/annals.2021.194.3.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> A sunflower with $r$ petals is a collection of $r$ sets so that the intersection of each pair is equal to the intersection of all of them. Erdős and Rado proved the sunflower lemma: for any fixed $r$, any family of sets of size $w$, with at least about $w^w$ sets, must contain a sunflower with $r$ petals. The famous sunflower conjecture states that the bound on the number of sets can be improved to $c^w$ for some constant $c$. In this paper, we improve the bound to about $(\\\\log\\\\, w)^w$. In fact, we prove the result for a robust notion of sunflowers, for which the bound we obtain is sharp up to lower order terms. </p>\",\"PeriodicalId\":8134,\"journal\":{\"name\":\"Annals of Mathematics\",\"volume\":\"589 \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2021.194.3.5\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2021.194.3.5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Improved bounds for the sunflower lemma | Annals of Mathematics
A sunflower with $r$ petals is a collection of $r$ sets so that the intersection of each pair is equal to the intersection of all of them. Erdős and Rado proved the sunflower lemma: for any fixed $r$, any family of sets of size $w$, with at least about $w^w$ sets, must contain a sunflower with $r$ petals. The famous sunflower conjecture states that the bound on the number of sets can be improved to $c^w$ for some constant $c$. In this paper, we improve the bound to about $(\log\, w)^w$. In fact, we prove the result for a robust notion of sunflowers, for which the bound we obtain is sharp up to lower order terms.
期刊介绍:
The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.