高斯随机过程拟合优度检验的傅里叶方法

IF 1.2 3区 数学 Q2 STATISTICS & PROBABILITY
Petr Čoupek, Viktor Dolník, Zdeněk Hlávka, Daniel Hlubinka
{"title":"高斯随机过程拟合优度检验的傅里叶方法","authors":"Petr Čoupek, Viktor Dolník, Zdeněk Hlávka, Daniel Hlubinka","doi":"10.1007/s00362-023-01510-4","DOIUrl":null,"url":null,"abstract":"<p>A new goodness-of-fit (GoF) test is proposed and investigated for the Gaussianity of the observed functional data. The test statistic is the Cramér-von Mises distance between the observed empirical characteristic functional (CF) and the theoretical CF corresponding to the null hypothesis stating that the functional observations (process paths) were generated from a specific parametric family of Gaussian processes, possibly with unknown parameters. The asymptotic null distribution of the proposed test statistic is derived also in the presence of these nuisance parameters, the consistency of the classical parametric bootstrap is established, and some particular choices of the necessary tuning parameters are discussed. The empirical level and power are investigated in a simulation study involving GoF tests of an Ornstein–Uhlenbeck process, Vašíček model, or a (fractional) Brownian motion, both with and without nuisance parameters, with suitable Gaussian and non-Gaussian alternatives.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"40 25","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fourier approach to goodness-of-fit tests for Gaussian random processes\",\"authors\":\"Petr Čoupek, Viktor Dolník, Zdeněk Hlávka, Daniel Hlubinka\",\"doi\":\"10.1007/s00362-023-01510-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new goodness-of-fit (GoF) test is proposed and investigated for the Gaussianity of the observed functional data. The test statistic is the Cramér-von Mises distance between the observed empirical characteristic functional (CF) and the theoretical CF corresponding to the null hypothesis stating that the functional observations (process paths) were generated from a specific parametric family of Gaussian processes, possibly with unknown parameters. The asymptotic null distribution of the proposed test statistic is derived also in the presence of these nuisance parameters, the consistency of the classical parametric bootstrap is established, and some particular choices of the necessary tuning parameters are discussed. The empirical level and power are investigated in a simulation study involving GoF tests of an Ornstein–Uhlenbeck process, Vašíček model, or a (fractional) Brownian motion, both with and without nuisance parameters, with suitable Gaussian and non-Gaussian alternatives.</p>\",\"PeriodicalId\":51166,\"journal\":{\"name\":\"Statistical Papers\",\"volume\":\"40 25\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Papers\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00362-023-01510-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00362-023-01510-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

提出并研究了一种新的拟合优度(GoF)检验方法来检验观测到的函数数据的高斯性。检验统计量是观测到的经验特征函数(CF)与理论CF之间的cram -von Mises距离,该距离对应于零假设,说明功能观测(过程路径)是由特定参数族高斯过程产生的,可能具有未知参数。在这些干扰参数存在的情况下,推导了所提出的检验统计量的渐近零分布,建立了经典参数自举的一致性,并讨论了必要调优参数的具体选择。在一项模拟研究中,研究了经验水平和功率,该研究涉及Ornstein-Uhlenbeck过程、Vašíček模型或(分数)布朗运动的GoF测试,包括有和没有干扰参数、适当的高斯和非高斯替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fourier approach to goodness-of-fit tests for Gaussian random processes

Fourier approach to goodness-of-fit tests for Gaussian random processes

A new goodness-of-fit (GoF) test is proposed and investigated for the Gaussianity of the observed functional data. The test statistic is the Cramér-von Mises distance between the observed empirical characteristic functional (CF) and the theoretical CF corresponding to the null hypothesis stating that the functional observations (process paths) were generated from a specific parametric family of Gaussian processes, possibly with unknown parameters. The asymptotic null distribution of the proposed test statistic is derived also in the presence of these nuisance parameters, the consistency of the classical parametric bootstrap is established, and some particular choices of the necessary tuning parameters are discussed. The empirical level and power are investigated in a simulation study involving GoF tests of an Ornstein–Uhlenbeck process, Vašíček model, or a (fractional) Brownian motion, both with and without nuisance parameters, with suitable Gaussian and non-Gaussian alternatives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Papers
Statistical Papers 数学-统计学与概率论
CiteScore
2.80
自引率
7.70%
发文量
95
审稿时长
6-12 weeks
期刊介绍: The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信