有理Cherednik代数的扭曲

IF 0.6 4区 数学 Q3 MATHEMATICS
Y Bazlov, E Jones-Healey, A Mcgaw, A Berenstein
{"title":"有理Cherednik代数的扭曲","authors":"Y Bazlov, E Jones-Healey, A Mcgaw, A Berenstein","doi":"10.1093/qmath/haac033","DOIUrl":null,"url":null,"abstract":"We show that braided Cherednik algebras introduced by Bazlov and Berenstein are cocycle twists of rational Cherednik algebras of the imprimitive complex reflection groups $G(m,p,n)$, when m is even. This gives a new construction of mystic reflection groups which have Artin–Schelter regular rings of quantum polynomial invariants. As an application of this result, we show that a braided Cherednik algebra has a finite-dimensional representation if and only if its rational counterpart has one.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twists of rational Cherednik algebras\",\"authors\":\"Y Bazlov, E Jones-Healey, A Mcgaw, A Berenstein\",\"doi\":\"10.1093/qmath/haac033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that braided Cherednik algebras introduced by Bazlov and Berenstein are cocycle twists of rational Cherednik algebras of the imprimitive complex reflection groups $G(m,p,n)$, when m is even. This gives a new construction of mystic reflection groups which have Artin–Schelter regular rings of quantum polynomial invariants. As an application of this result, we show that a braided Cherednik algebra has a finite-dimensional representation if and only if its rational counterpart has one.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/qmath/haac033\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haac033","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了当m为偶数时,Bazlov和Berenstein引入的辫状Cherednik代数是非原复反射群G(m,p,n)$的有理Cherednik代数的环扭转。给出了具有量子多项式不变量Artin-Schelter正则环的神秘反射群的一种新构造。作为这个结果的一个应用,我们证明了一个编织Cherednik代数有有限维表示当且仅当它的有理对应物有有限维表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twists of rational Cherednik algebras
We show that braided Cherednik algebras introduced by Bazlov and Berenstein are cocycle twists of rational Cherednik algebras of the imprimitive complex reflection groups $G(m,p,n)$, when m is even. This gives a new construction of mystic reflection groups which have Artin–Schelter regular rings of quantum polynomial invariants. As an application of this result, we show that a braided Cherednik algebra has a finite-dimensional representation if and only if its rational counterpart has one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信