Nicolas Bergeron, Pierre Charollois, Luis E. Garcia
{"title":"GL N (Z)的欧拉类越界与爱森斯坦上同","authors":"Nicolas Bergeron, Pierre Charollois, Luis E. Garcia","doi":"10.1007/s11537-019-1822-6","DOIUrl":null,"url":null,"abstract":"These notes were written to be distributed to the audience of the first author’s Takagi Lectures delivered June 23, 2018. These are based on a work-in-progress that is part of a collaborative project that also involves Akshay Venkatesh.In this work-in-progress we give a new construction of some Eisenstein classes for GL<sub><i>N</i></sub> (<b>Z</b>) that were first considered by Nori [41] and Sczech [44]. The starting point of this construction is a theorem of Sullivan on the vanishing of the Euler class of SL<sub><i>N</i></sub> (<b>Z</b>) vector bundles and the explicit transgression of this Euler class by Bismut and Cheeger. Their proof indeed produces a universal form that can be thought of as a kernel for a <i>regularized theta lift</i> for the reductive dual pair (GL<sub><i>N</i></sub>, GL<sub>1</sub>). This suggests looking to reductive dual pairs (GL<sub><i>N</i></sub>, GL<sub><i>k</i></sub>) with <i>k</i> ≥ 1 for possible generalizations of the Eisenstein cocycle. This leads to fascinating lifts that relate the geometry/topology world of real arithmetic locally symmetric spaces to the arithmetic world of modular forms.In these notes we do not deal with the most general cases and put a lot of emphasis on various examples that are often classical.","PeriodicalId":54908,"journal":{"name":"Japanese Journal of Mathematics","volume":"129 ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Transgressions of the Euler class and Eisenstein cohomology of GL N (Z)\",\"authors\":\"Nicolas Bergeron, Pierre Charollois, Luis E. Garcia\",\"doi\":\"10.1007/s11537-019-1822-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"These notes were written to be distributed to the audience of the first author’s Takagi Lectures delivered June 23, 2018. These are based on a work-in-progress that is part of a collaborative project that also involves Akshay Venkatesh.In this work-in-progress we give a new construction of some Eisenstein classes for GL<sub><i>N</i></sub> (<b>Z</b>) that were first considered by Nori [41] and Sczech [44]. The starting point of this construction is a theorem of Sullivan on the vanishing of the Euler class of SL<sub><i>N</i></sub> (<b>Z</b>) vector bundles and the explicit transgression of this Euler class by Bismut and Cheeger. Their proof indeed produces a universal form that can be thought of as a kernel for a <i>regularized theta lift</i> for the reductive dual pair (GL<sub><i>N</i></sub>, GL<sub>1</sub>). This suggests looking to reductive dual pairs (GL<sub><i>N</i></sub>, GL<sub><i>k</i></sub>) with <i>k</i> ≥ 1 for possible generalizations of the Eisenstein cocycle. This leads to fascinating lifts that relate the geometry/topology world of real arithmetic locally symmetric spaces to the arithmetic world of modular forms.In these notes we do not deal with the most general cases and put a lot of emphasis on various examples that are often classical.\",\"PeriodicalId\":54908,\"journal\":{\"name\":\"Japanese Journal of Mathematics\",\"volume\":\"129 \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11537-019-1822-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11537-019-1822-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Transgressions of the Euler class and Eisenstein cohomology of GL N (Z)
These notes were written to be distributed to the audience of the first author’s Takagi Lectures delivered June 23, 2018. These are based on a work-in-progress that is part of a collaborative project that also involves Akshay Venkatesh.In this work-in-progress we give a new construction of some Eisenstein classes for GLN (Z) that were first considered by Nori [41] and Sczech [44]. The starting point of this construction is a theorem of Sullivan on the vanishing of the Euler class of SLN (Z) vector bundles and the explicit transgression of this Euler class by Bismut and Cheeger. Their proof indeed produces a universal form that can be thought of as a kernel for a regularized theta lift for the reductive dual pair (GLN, GL1). This suggests looking to reductive dual pairs (GLN, GLk) with k ≥ 1 for possible generalizations of the Eisenstein cocycle. This leads to fascinating lifts that relate the geometry/topology world of real arithmetic locally symmetric spaces to the arithmetic world of modular forms.In these notes we do not deal with the most general cases and put a lot of emphasis on various examples that are often classical.
期刊介绍:
The official journal of the Mathematical Society of Japan, the Japanese Journal of Mathematics is devoted to authoritative research survey articles that will promote future progress in mathematics. It encourages advanced and clear expositions, giving new insights on topics of current interest from broad perspectives and/or reviewing all major developments in an important area over many years.
An eminent international mathematics journal, the Japanese Journal of Mathematics has been published since 1924. It is an ideal resource for a wide range of mathematicians extending beyond a small circle of specialists.
The official journal of the Mathematical Society of Japan.
Devoted to authoritative research survey articles that will promote future progress in mathematics.
Gives new insight on topics of current interest from broad perspectives and/or reviews all major developments in an important area over many years.