Gregorio Quintana-Ortí, Fernando Hernando, Francisco D. Igual
{"title":"算法1033:分布式存储结构下随机线性码最小距离计算的并行实现","authors":"Gregorio Quintana-Ortí, Fernando Hernando, Francisco D. Igual","doi":"https://dl.acm.org/doi/10.1145/3573383","DOIUrl":null,"url":null,"abstract":"<p>The minimum distance of a linear code is a key concept in information theory. Therefore, the time required by its computation is very important to many problems in this area. In this article, we introduce a family of implementations of the Brouwer–Zimmermann algorithm for distributed-memory architectures for computing the minimum distance of a random linear code over 𝔽<sub>2</sub>. Both current commercial and public-domain software only work on either unicore architectures or shared-memory architectures, which are limited in the number of cores/processors employed in the computation. Our implementations focus on distributed-memory architectures, thus being able to employ hundreds or even thousands of cores in the computation of the minimum distance. Our experimental results show that our implementations are much faster, even up to several orders of magnitude, than current implementations widely used nowadays.</p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"35 ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithm 1033: Parallel Implementations for Computing the Minimum Distance of a Random Linear Code on Distributed-memory Architectures\",\"authors\":\"Gregorio Quintana-Ortí, Fernando Hernando, Francisco D. Igual\",\"doi\":\"https://dl.acm.org/doi/10.1145/3573383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The minimum distance of a linear code is a key concept in information theory. Therefore, the time required by its computation is very important to many problems in this area. In this article, we introduce a family of implementations of the Brouwer–Zimmermann algorithm for distributed-memory architectures for computing the minimum distance of a random linear code over 𝔽<sub>2</sub>. Both current commercial and public-domain software only work on either unicore architectures or shared-memory architectures, which are limited in the number of cores/processors employed in the computation. Our implementations focus on distributed-memory architectures, thus being able to employ hundreds or even thousands of cores in the computation of the minimum distance. Our experimental results show that our implementations are much faster, even up to several orders of magnitude, than current implementations widely used nowadays.</p>\",\"PeriodicalId\":50935,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software\",\"volume\":\"35 \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3573383\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3573383","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Algorithm 1033: Parallel Implementations for Computing the Minimum Distance of a Random Linear Code on Distributed-memory Architectures
The minimum distance of a linear code is a key concept in information theory. Therefore, the time required by its computation is very important to many problems in this area. In this article, we introduce a family of implementations of the Brouwer–Zimmermann algorithm for distributed-memory architectures for computing the minimum distance of a random linear code over 𝔽2. Both current commercial and public-domain software only work on either unicore architectures or shared-memory architectures, which are limited in the number of cores/processors employed in the computation. Our implementations focus on distributed-memory architectures, thus being able to employ hundreds or even thousands of cores in the computation of the minimum distance. Our experimental results show that our implementations are much faster, even up to several orders of magnitude, than current implementations widely used nowadays.
期刊介绍:
As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.