算法1031:mqsi -单调五次样条插值

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Thomas Lux, Layne T. Watson, Tyler Chang, William Thacker
{"title":"算法1031:mqsi -单调五次样条插值","authors":"Thomas Lux, Layne T. Watson, Tyler Chang, William Thacker","doi":"https://dl.acm.org/doi/10.1145/3570157","DOIUrl":null,"url":null,"abstract":"<p>MQSI is a Fortran 2003 subroutine for constructing monotone quintic spline interpolants to univariate monotone data. Using sharp theoretical monotonicity constraints, first and second derivative estimates at data provided by a quadratic facet model are refined to produce a univariate C<sup>2</sup> monotone interpolant. Algorithm and implementation details, complexity and sensitivity analyses, usage information, a brief performance study, and comparisons with other spline approaches are included.</p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"41 ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithm 1031: MQSI—Monotone Quintic Spline Interpolation\",\"authors\":\"Thomas Lux, Layne T. Watson, Tyler Chang, William Thacker\",\"doi\":\"https://dl.acm.org/doi/10.1145/3570157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>MQSI is a Fortran 2003 subroutine for constructing monotone quintic spline interpolants to univariate monotone data. Using sharp theoretical monotonicity constraints, first and second derivative estimates at data provided by a quadratic facet model are refined to produce a univariate C<sup>2</sup> monotone interpolant. Algorithm and implementation details, complexity and sensitivity analyses, usage information, a brief performance study, and comparisons with other spline approaches are included.</p>\",\"PeriodicalId\":50935,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software\",\"volume\":\"41 \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3570157\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3570157","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

MQSI是Fortran 2003的一个子程序,用于构造单变量单调数据的单调五次样条插值。使用尖锐的理论单调性约束,在二次面模型提供的数据上的一阶和二阶导数估计被精炼以产生单变量C2单调插值。包括算法和实现细节、复杂性和灵敏度分析、使用信息、简要的性能研究以及与其他样条方法的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithm 1031: MQSI—Monotone Quintic Spline Interpolation

MQSI is a Fortran 2003 subroutine for constructing monotone quintic spline interpolants to univariate monotone data. Using sharp theoretical monotonicity constraints, first and second derivative estimates at data provided by a quadratic facet model are refined to produce a univariate C2 monotone interpolant. Algorithm and implementation details, complexity and sensitivity analyses, usage information, a brief performance study, and comparisons with other spline approaches are included.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software 工程技术-计算机:软件工程
CiteScore
5.00
自引率
3.70%
发文量
50
审稿时长
>12 weeks
期刊介绍: As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信