非发散型椭圆型偏微分方程的计算多尺度方法

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Philip Freese, Dietmar Gallistl, Daniel Peterseim, Timo Sprekeler
{"title":"非发散型椭圆型偏微分方程的计算多尺度方法","authors":"Philip Freese, Dietmar Gallistl, Daniel Peterseim, Timo Sprekeler","doi":"10.1515/cmam-2023-0040","DOIUrl":null,"url":null,"abstract":"This paper proposes novel computational multiscale methods for linear second-order elliptic partial differential equations in nondivergence form with heterogeneous coefficients satisfying a Cordes condition. The construction follows the methodology of localized orthogonal decomposition (LOD) and provides operator-adapted coarse spaces by solving localized cell problems on a fine scale in the spirit of numerical homogenization. The degrees of freedom of the coarse spaces are related to nonconforming and mixed finite element methods for homogeneous problems. The rigorous error analysis of one exemplary approach shows that the favorable properties of the LOD methodology known from divergence-form PDEs, i.e., its applicability and accuracy beyond scale separation and periodicity, remain valid for problems in nondivergence form.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"113 2","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Multiscale Methods for Nondivergence-Form Elliptic Partial Differential Equations\",\"authors\":\"Philip Freese, Dietmar Gallistl, Daniel Peterseim, Timo Sprekeler\",\"doi\":\"10.1515/cmam-2023-0040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes novel computational multiscale methods for linear second-order elliptic partial differential equations in nondivergence form with heterogeneous coefficients satisfying a Cordes condition. The construction follows the methodology of localized orthogonal decomposition (LOD) and provides operator-adapted coarse spaces by solving localized cell problems on a fine scale in the spirit of numerical homogenization. The degrees of freedom of the coarse spaces are related to nonconforming and mixed finite element methods for homogeneous problems. The rigorous error analysis of one exemplary approach shows that the favorable properties of the LOD methodology known from divergence-form PDEs, i.e., its applicability and accuracy beyond scale separation and periodicity, remain valid for problems in nondivergence form.\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":\"113 2\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2023-0040\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2023-0040","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的多尺度计算方法,用于求解满足Cordes条件的非散度非均质系数线性二阶椭圆型偏微分方程。该构造遵循定域正交分解(LOD)的方法,并在数值均匀化的精神下,通过在精细尺度上求解定域单元问题,提供适合算子的粗空间。粗糙空间的自由度与齐次问题的非协调和混合有限元方法有关。对一个示例性方法的严格误差分析表明,发散型偏微分方程中已知的LOD方法的有利性质,即其超越尺度分离和周期性的适用性和准确性,仍然适用于非发散形式的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Multiscale Methods for Nondivergence-Form Elliptic Partial Differential Equations
This paper proposes novel computational multiscale methods for linear second-order elliptic partial differential equations in nondivergence form with heterogeneous coefficients satisfying a Cordes condition. The construction follows the methodology of localized orthogonal decomposition (LOD) and provides operator-adapted coarse spaces by solving localized cell problems on a fine scale in the spirit of numerical homogenization. The degrees of freedom of the coarse spaces are related to nonconforming and mixed finite element methods for homogeneous problems. The rigorous error analysis of one exemplary approach shows that the favorable properties of the LOD methodology known from divergence-form PDEs, i.e., its applicability and accuracy beyond scale separation and periodicity, remain valid for problems in nondivergence form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信