关于无界序连续算子2

IF 0.8 3区 数学 Q2 MATHEMATICS
Bahri Turan, Hüma Gürkök
{"title":"关于无界序连续算子2","authors":"Bahri Turan, Hüma Gürkök","doi":"10.1007/s11117-023-01021-4","DOIUrl":null,"url":null,"abstract":"<p>Let <i>E</i> and <i>F</i> be two Archimedean Riesz spaces. An operator <span>\\(T:E\\rightarrow F\\)</span> is said to be unbounded order continuous (<i>uo</i>-continuous), if <span>\\(u_{\\alpha }\\overset{uo}{\\rightarrow }0\\)</span> in <i>E</i> implies <span>\\(Tu_{\\alpha }\\overset{uo}{ \\rightarrow }0\\)</span> in <i>F</i>. In this study, our main aim is to give the solution to two open problems which are posed by Bahramnezhad and Azar. Using this, we obtain that the space <span>\\(L_{uo}(E,F)\\)</span> of order bounded unbounded order continuous operators is an ideal in <span>\\(L_{b}(E,F)\\)</span> for Dedekind complete Riesz space <i>F</i>. In general, by giving an example that the space <span>\\(L_{uo}(E,F)\\)</span> of order bounded unbounded order continuous operators is not a band in <span>\\( L_{b}(E,F)\\)</span>, we obtain the conditions on <i>E</i> or <i>F</i> for the space <span>\\( L_{uo}(E,F)\\)</span> to be a band in <span>\\(L_{b}(E,F)\\)</span>. Then, we give the extension theorem for <i>uo</i>-continuous operators similar to Veksler’s theorem for order continuous operators.</p>","PeriodicalId":54596,"journal":{"name":"Positivity","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On unbounded order continuous operators 2\",\"authors\":\"Bahri Turan, Hüma Gürkök\",\"doi\":\"10.1007/s11117-023-01021-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>E</i> and <i>F</i> be two Archimedean Riesz spaces. An operator <span>\\\\(T:E\\\\rightarrow F\\\\)</span> is said to be unbounded order continuous (<i>uo</i>-continuous), if <span>\\\\(u_{\\\\alpha }\\\\overset{uo}{\\\\rightarrow }0\\\\)</span> in <i>E</i> implies <span>\\\\(Tu_{\\\\alpha }\\\\overset{uo}{ \\\\rightarrow }0\\\\)</span> in <i>F</i>. In this study, our main aim is to give the solution to two open problems which are posed by Bahramnezhad and Azar. Using this, we obtain that the space <span>\\\\(L_{uo}(E,F)\\\\)</span> of order bounded unbounded order continuous operators is an ideal in <span>\\\\(L_{b}(E,F)\\\\)</span> for Dedekind complete Riesz space <i>F</i>. In general, by giving an example that the space <span>\\\\(L_{uo}(E,F)\\\\)</span> of order bounded unbounded order continuous operators is not a band in <span>\\\\( L_{b}(E,F)\\\\)</span>, we obtain the conditions on <i>E</i> or <i>F</i> for the space <span>\\\\( L_{uo}(E,F)\\\\)</span> to be a band in <span>\\\\(L_{b}(E,F)\\\\)</span>. Then, we give the extension theorem for <i>uo</i>-continuous operators similar to Veksler’s theorem for order continuous operators.</p>\",\"PeriodicalId\":54596,\"journal\":{\"name\":\"Positivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Positivity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11117-023-01021-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positivity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11117-023-01021-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设E和F是两个阿基米德Riesz空间。如果E中的\(u_{\alpha }\overset{uo}{\rightarrow }0\)暗示f中的\(Tu_{\alpha }\overset{uo}{ \rightarrow }0\),则称算子\(T:E\rightarrow F\)为无界序连续(o-连续)。本文的主要目的是给出由Bahramnezhad和Azar提出的两个开放问题的解。由此,我们得到了序有界无界序连续算子的空间\(L_{uo}(E,F)\)是Dedekind完全Riesz空间F在\(L_{b}(E,F)\)中的一个理想。一般来说,通过举例说明序有界无界序连续算子的空间\(L_{uo}(E,F)\)不是\( L_{b}(E,F)\)中的一个带,我们得到了E或F上空间\( L_{uo}(E,F)\)是\(L_{b}(E,F)\)中的一个带的条件。然后,我们给出了双连续算子的扩展定理,类似于序连续算子的Veksler定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On unbounded order continuous operators 2

Let E and F be two Archimedean Riesz spaces. An operator \(T:E\rightarrow F\) is said to be unbounded order continuous (uo-continuous), if \(u_{\alpha }\overset{uo}{\rightarrow }0\) in E implies \(Tu_{\alpha }\overset{uo}{ \rightarrow }0\) in F. In this study, our main aim is to give the solution to two open problems which are posed by Bahramnezhad and Azar. Using this, we obtain that the space \(L_{uo}(E,F)\) of order bounded unbounded order continuous operators is an ideal in \(L_{b}(E,F)\) for Dedekind complete Riesz space F. In general, by giving an example that the space \(L_{uo}(E,F)\) of order bounded unbounded order continuous operators is not a band in \( L_{b}(E,F)\), we obtain the conditions on E or F for the space \( L_{uo}(E,F)\) to be a band in \(L_{b}(E,F)\). Then, we give the extension theorem for uo-continuous operators similar to Veksler’s theorem for order continuous operators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Positivity
Positivity 数学-数学
CiteScore
1.80
自引率
10.00%
发文量
88
审稿时长
>12 weeks
期刊介绍: The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome. The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信