Tea Vojkovic, David Quero, Charles Poussot-Vassal, Pierre Vuillemin
{"title":"Loewner框架下MIMO系统的低阶参数状态空间建模","authors":"Tea Vojkovic, David Quero, Charles Poussot-Vassal, Pierre Vuillemin","doi":"10.1137/22m1509898","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 22, Issue 4, Page 3130-3164, December 2023. <br/> Abstract.In this work, we present a novel data-driven method for identifying parametric MIMO generalized state-space or descriptor systems of low order that accurately capture the frequency and time domain behavior of large-scale linear dynamical systems. The low-order parametric descriptor systems are identified from transfer matrix samples by means of two-variable Lagrange rational matrix interpolation. This is done within the Loewner framework by deploying the new matrix-valued barycentric formula given in both right and left polynomial matrix fraction forms, which enables the construction of minimal parametric descriptor systems with rectangular transfer matrices. The developed method allows the reduction of order and parameter dependence complexity of the constructed system. Stability of the system is preserved by the postprocessing technique based on flipping signs of unstable poles. The developed methodology is illustrated with a few academic examples and applied to low-order parametric state-space identification of an aerodynamic system.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"37 ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Order Parametric State-Space Modeling of MIMO Systems in the Loewner Framework\",\"authors\":\"Tea Vojkovic, David Quero, Charles Poussot-Vassal, Pierre Vuillemin\",\"doi\":\"10.1137/22m1509898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 22, Issue 4, Page 3130-3164, December 2023. <br/> Abstract.In this work, we present a novel data-driven method for identifying parametric MIMO generalized state-space or descriptor systems of low order that accurately capture the frequency and time domain behavior of large-scale linear dynamical systems. The low-order parametric descriptor systems are identified from transfer matrix samples by means of two-variable Lagrange rational matrix interpolation. This is done within the Loewner framework by deploying the new matrix-valued barycentric formula given in both right and left polynomial matrix fraction forms, which enables the construction of minimal parametric descriptor systems with rectangular transfer matrices. The developed method allows the reduction of order and parameter dependence complexity of the constructed system. Stability of the system is preserved by the postprocessing technique based on flipping signs of unstable poles. The developed methodology is illustrated with a few academic examples and applied to low-order parametric state-space identification of an aerodynamic system.\",\"PeriodicalId\":49534,\"journal\":{\"name\":\"SIAM Journal on Applied Dynamical Systems\",\"volume\":\"37 \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1509898\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1509898","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Low-Order Parametric State-Space Modeling of MIMO Systems in the Loewner Framework
SIAM Journal on Applied Dynamical Systems, Volume 22, Issue 4, Page 3130-3164, December 2023. Abstract.In this work, we present a novel data-driven method for identifying parametric MIMO generalized state-space or descriptor systems of low order that accurately capture the frequency and time domain behavior of large-scale linear dynamical systems. The low-order parametric descriptor systems are identified from transfer matrix samples by means of two-variable Lagrange rational matrix interpolation. This is done within the Loewner framework by deploying the new matrix-valued barycentric formula given in both right and left polynomial matrix fraction forms, which enables the construction of minimal parametric descriptor systems with rectangular transfer matrices. The developed method allows the reduction of order and parameter dependence complexity of the constructed system. Stability of the system is preserved by the postprocessing technique based on flipping signs of unstable poles. The developed methodology is illustrated with a few academic examples and applied to low-order parametric state-space identification of an aerodynamic system.
期刊介绍:
SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.