矩阵补全的深度线性网络——一个无限深度极限

IF 1.7 4区 数学 Q2 MATHEMATICS, APPLIED
Nadav Cohen, Govind Menon, Zsolt Veraszto
{"title":"矩阵补全的深度线性网络——一个无限深度极限","authors":"Nadav Cohen, Govind Menon, Zsolt Veraszto","doi":"10.1137/22m1530653","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 22, Issue 4, Page 3208-3232, December 2023. <br/> Abstract.The deep linear network (DLN) is a model for implicit regularization in gradient based optimization of overparametrized learning architectures. Training the DLN corresponds to a Riemannian gradient flow, where the Riemannian metric is defined by the architecture of the network and the loss function is defined by the learning task. We extend this geometric framework, obtaining explicit expressions for the volume form, including the case when the network has infinite depth. We investigate the link between the Riemannian geometry and the training asymptotics for matrix completion with rigorous analysis and numerics. We propose that under small initialization, implicit regularization is a result of bias towards high state space volume.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"43 ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Linear Networks for Matrix Completion—an Infinite Depth Limit\",\"authors\":\"Nadav Cohen, Govind Menon, Zsolt Veraszto\",\"doi\":\"10.1137/22m1530653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 22, Issue 4, Page 3208-3232, December 2023. <br/> Abstract.The deep linear network (DLN) is a model for implicit regularization in gradient based optimization of overparametrized learning architectures. Training the DLN corresponds to a Riemannian gradient flow, where the Riemannian metric is defined by the architecture of the network and the loss function is defined by the learning task. We extend this geometric framework, obtaining explicit expressions for the volume form, including the case when the network has infinite depth. We investigate the link between the Riemannian geometry and the training asymptotics for matrix completion with rigorous analysis and numerics. We propose that under small initialization, implicit regularization is a result of bias towards high state space volume.\",\"PeriodicalId\":49534,\"journal\":{\"name\":\"SIAM Journal on Applied Dynamical Systems\",\"volume\":\"43 \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1530653\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1530653","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

应用动力系统学报,第22卷,第4期,第3208-3232页,2023年12月。摘要。深度线性网络(deep linear network, DLN)是一种基于梯度优化的隐式正则化模型。训练DLN对应于黎曼梯度流,其中黎曼度量由网络的体系结构定义,损失函数由学习任务定义。我们扩展了这个几何框架,得到了体积形式的显式表达式,包括网络具有无限深度的情况。我们用严格的分析和数值研究了黎曼几何和矩阵补全的训练渐近之间的联系。我们提出在小初始化下,隐式正则化是偏向于高状态空间体积的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Linear Networks for Matrix Completion—an Infinite Depth Limit
SIAM Journal on Applied Dynamical Systems, Volume 22, Issue 4, Page 3208-3232, December 2023.
Abstract.The deep linear network (DLN) is a model for implicit regularization in gradient based optimization of overparametrized learning architectures. Training the DLN corresponds to a Riemannian gradient flow, where the Riemannian metric is defined by the architecture of the network and the loss function is defined by the learning task. We extend this geometric framework, obtaining explicit expressions for the volume form, including the case when the network has infinite depth. We investigate the link between the Riemannian geometry and the training asymptotics for matrix completion with rigorous analysis and numerics. We propose that under small initialization, implicit regularization is a result of bias towards high state space volume.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems 物理-物理:数学物理
CiteScore
3.60
自引率
4.80%
发文量
74
审稿时长
6 months
期刊介绍: SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信