时滞微分方程周期解横向同斜轨道的数值计算

IF 1.7 4区 数学 Q2 MATHEMATICS, APPLIED
Olivier Hénot, Jean-Philippe Lessard, Jason D. Mireles James
{"title":"时滞微分方程周期解横向同斜轨道的数值计算","authors":"Olivier Hénot, Jean-Philippe Lessard, Jason D. Mireles James","doi":"10.1137/23m1562858","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 22, Issue 4, Page 3093-3129, December 2023. <br/> Abstract. We present a computational method for studying transverse homoclinic orbits for periodic solutions of delay differential equations, a phenomenon that we refer to as the Poincaré scenario. The strategy is geometric in nature and consists of viewing the connection as the zero of a nonlinear map, such that the invertibility of its Fréchet derivative implies the transversality of the intersection. The map is defined by a projected boundary value problem (BVP), with boundary conditions in the (finite dimensional) unstable and (infinite dimensional) stable manifolds of the periodic orbit. The parameterization method is used to compute the unstable manifold, and the BVP is solved using a discrete time dynamical system approach (defined via the method of steps) and Chebyshev series expansions. We illustrate this technique by computing transverse homoclinic orbits in the cubic Ikeda and Mackey–Glass systems.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"56 ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Computation of Transverse Homoclinic Orbits for Periodic Solutions of Delay Differential Equations\",\"authors\":\"Olivier Hénot, Jean-Philippe Lessard, Jason D. Mireles James\",\"doi\":\"10.1137/23m1562858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 22, Issue 4, Page 3093-3129, December 2023. <br/> Abstract. We present a computational method for studying transverse homoclinic orbits for periodic solutions of delay differential equations, a phenomenon that we refer to as the Poincaré scenario. The strategy is geometric in nature and consists of viewing the connection as the zero of a nonlinear map, such that the invertibility of its Fréchet derivative implies the transversality of the intersection. The map is defined by a projected boundary value problem (BVP), with boundary conditions in the (finite dimensional) unstable and (infinite dimensional) stable manifolds of the periodic orbit. The parameterization method is used to compute the unstable manifold, and the BVP is solved using a discrete time dynamical system approach (defined via the method of steps) and Chebyshev series expansions. We illustrate this technique by computing transverse homoclinic orbits in the cubic Ikeda and Mackey–Glass systems.\",\"PeriodicalId\":49534,\"journal\":{\"name\":\"SIAM Journal on Applied Dynamical Systems\",\"volume\":\"56 \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1562858\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1562858","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

应用动力系统学报,第22卷,第4期,3093-3129页,2023年12月。摘要。我们提出了一种研究时滞微分方程周期解的横向同斜轨道的计算方法,我们将这种现象称为庞卡罗情景。该策略本质上是几何的,包括将连接视为非线性映射的零,这样它的fr导数的可逆性意味着交集的截距。该映射由一个投影边值问题(BVP)定义,边界条件分别存在于周期轨道的(有限维)不稳定流形和(无限维)稳定流形中。采用参数化方法计算不稳定流形,采用离散时间动力系统方法(通过步进法定义)和切比雪夫级数展开求解BVP。我们通过计算立方Ikeda和Mackey-Glass系统中的横向同斜轨道来说明这种技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Computation of Transverse Homoclinic Orbits for Periodic Solutions of Delay Differential Equations
SIAM Journal on Applied Dynamical Systems, Volume 22, Issue 4, Page 3093-3129, December 2023.
Abstract. We present a computational method for studying transverse homoclinic orbits for periodic solutions of delay differential equations, a phenomenon that we refer to as the Poincaré scenario. The strategy is geometric in nature and consists of viewing the connection as the zero of a nonlinear map, such that the invertibility of its Fréchet derivative implies the transversality of the intersection. The map is defined by a projected boundary value problem (BVP), with boundary conditions in the (finite dimensional) unstable and (infinite dimensional) stable manifolds of the periodic orbit. The parameterization method is used to compute the unstable manifold, and the BVP is solved using a discrete time dynamical system approach (defined via the method of steps) and Chebyshev series expansions. We illustrate this technique by computing transverse homoclinic orbits in the cubic Ikeda and Mackey–Glass systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems 物理-物理:数学物理
CiteScore
3.60
自引率
4.80%
发文量
74
审稿时长
6 months
期刊介绍: SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信