Christopher P Hansen, Roland Kays, Joshua J Millspaugh
{"title":"从后院到野外:哺乳动物群落在城市化梯度中的变化","authors":"Christopher P Hansen, Roland Kays, Joshua J Millspaugh","doi":"10.1093/jmammal/gyad110","DOIUrl":null,"url":null,"abstract":"Urbanization often results in biodiversity loss and homogenization, but this result is not universal and there is substantial variability in the spatiotemporal effects of urbanization on wildlife across cities and taxa. Areas with lower population and housing density are some of the fastest-growing regions in the western United States; thus, more research in these areas could offer additional insight into the effects of urbanization on wildlife and the potential importance of wild spaces in maintaining a diverse biotic community surrounding developed areas. To address this need, we conducted a study to identify the effects of urbanization (i.e. housing density) on mammals along a housing density gradient from wilderness to suburbia in Missoula, Montana. We deployed 178 motion-activated trail cameras at random sites within urban/suburban, exurban, rural, and wild regions from May to October 2019 to 2020. We identified all mammals >150 g, then evaluated how housing density influenced: (i) occupancy and (ii) species richness using multispecies occupancy models; (iii) relative abundance using Poisson models; and (iv) diel activity patterns using kernel density estimation and logistic regression. Urbanization was the strongest driver of mammal distribution, with a linear decline in mammal species richness as housing density increased. Urbanization also had strong effects on occupancy and detection rates, with larger-bodied mammals generally having stronger negative associations. Overall, mammal relative abundance was highest in suburban regions; however, this effect was largely driven by White-tailed Deer. Natural environmental factors explained most changes in mammal nocturnal activity; however, urbanization strongly affected nocturnality in some species, with Black Bear and White-tailed Deer becoming more nocturnal and Red Fox and Northern Raccoon becoming less nocturnal as housing density increased. While our study confirms that some mammals can live and thrive in developed areas, it emphasizes the importance of maintaining wild areas for those species that cannot.","PeriodicalId":50157,"journal":{"name":"Journal of Mammalogy","volume":"43 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From backyard to backcountry: changes in mammal communities across an urbanization gradient\",\"authors\":\"Christopher P Hansen, Roland Kays, Joshua J Millspaugh\",\"doi\":\"10.1093/jmammal/gyad110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urbanization often results in biodiversity loss and homogenization, but this result is not universal and there is substantial variability in the spatiotemporal effects of urbanization on wildlife across cities and taxa. Areas with lower population and housing density are some of the fastest-growing regions in the western United States; thus, more research in these areas could offer additional insight into the effects of urbanization on wildlife and the potential importance of wild spaces in maintaining a diverse biotic community surrounding developed areas. To address this need, we conducted a study to identify the effects of urbanization (i.e. housing density) on mammals along a housing density gradient from wilderness to suburbia in Missoula, Montana. We deployed 178 motion-activated trail cameras at random sites within urban/suburban, exurban, rural, and wild regions from May to October 2019 to 2020. We identified all mammals >150 g, then evaluated how housing density influenced: (i) occupancy and (ii) species richness using multispecies occupancy models; (iii) relative abundance using Poisson models; and (iv) diel activity patterns using kernel density estimation and logistic regression. Urbanization was the strongest driver of mammal distribution, with a linear decline in mammal species richness as housing density increased. Urbanization also had strong effects on occupancy and detection rates, with larger-bodied mammals generally having stronger negative associations. Overall, mammal relative abundance was highest in suburban regions; however, this effect was largely driven by White-tailed Deer. Natural environmental factors explained most changes in mammal nocturnal activity; however, urbanization strongly affected nocturnality in some species, with Black Bear and White-tailed Deer becoming more nocturnal and Red Fox and Northern Raccoon becoming less nocturnal as housing density increased. While our study confirms that some mammals can live and thrive in developed areas, it emphasizes the importance of maintaining wild areas for those species that cannot.\",\"PeriodicalId\":50157,\"journal\":{\"name\":\"Journal of Mammalogy\",\"volume\":\"43 3\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mammalogy\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jmammal/gyad110\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mammalogy","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmammal/gyad110","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
From backyard to backcountry: changes in mammal communities across an urbanization gradient
Urbanization often results in biodiversity loss and homogenization, but this result is not universal and there is substantial variability in the spatiotemporal effects of urbanization on wildlife across cities and taxa. Areas with lower population and housing density are some of the fastest-growing regions in the western United States; thus, more research in these areas could offer additional insight into the effects of urbanization on wildlife and the potential importance of wild spaces in maintaining a diverse biotic community surrounding developed areas. To address this need, we conducted a study to identify the effects of urbanization (i.e. housing density) on mammals along a housing density gradient from wilderness to suburbia in Missoula, Montana. We deployed 178 motion-activated trail cameras at random sites within urban/suburban, exurban, rural, and wild regions from May to October 2019 to 2020. We identified all mammals >150 g, then evaluated how housing density influenced: (i) occupancy and (ii) species richness using multispecies occupancy models; (iii) relative abundance using Poisson models; and (iv) diel activity patterns using kernel density estimation and logistic regression. Urbanization was the strongest driver of mammal distribution, with a linear decline in mammal species richness as housing density increased. Urbanization also had strong effects on occupancy and detection rates, with larger-bodied mammals generally having stronger negative associations. Overall, mammal relative abundance was highest in suburban regions; however, this effect was largely driven by White-tailed Deer. Natural environmental factors explained most changes in mammal nocturnal activity; however, urbanization strongly affected nocturnality in some species, with Black Bear and White-tailed Deer becoming more nocturnal and Red Fox and Northern Raccoon becoming less nocturnal as housing density increased. While our study confirms that some mammals can live and thrive in developed areas, it emphasizes the importance of maintaining wild areas for those species that cannot.