E. Amzallag, L.-P. Arguin, E. Bailey, K. Huib, R. Rao
{"title":"Selberg中心极限定理大偏差的随机矩阵修正证据","authors":"E. Amzallag, L.-P. Arguin, E. Bailey, K. Huib, R. Rao","doi":"10.1080/10586458.2021.2011806","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b></p><p>Selberg’s central limit theorem states that the values of <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0001.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0001.gif\"}' src=\"//:0\"/><span></span></span><span><img alt=\"\" data-formula-source='{\"type\" : \"mathjax\"}' src=\"//:0\"/><math display=\"inline\"><mrow><mtext>log</mtext><mo> </mo><mo>|</mo><mi>ζ</mi><mo stretchy=\"false\">(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mi mathvariant=\"normal\">i</mi><mi>τ</mi><mo stretchy=\"false\">)</mo><mo>|</mo></mrow></math></span>, where <i>τ</i> is a uniform random variable on <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0002.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0002.gif\"}' src=\"//:0\"/><span></span></span><span><img alt=\"\" data-formula-source='{\"type\" : \"mathjax\"}' src=\"//:0\"/><math display=\"inline\"><mrow><mo stretchy=\"false\">[</mo><mi>T</mi><mo>,</mo><mn>2</mn><mi>T</mi><mo stretchy=\"false\">]</mo></mrow></math></span>, are asymptotically distributed like a Gaussian random variable of mean 0 and standard deviation <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0003.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0003.gif\"}' src=\"//:0\"/><span></span></span><span><img alt=\"\" data-formula-source='{\"type\" : \"mathjax\"}' src=\"//:0\"/><math display=\"inline\"><mrow><msqrt><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mtext>log</mtext><mo> </mo><mo> </mo><mtext>log</mtext><mo> </mo><mi>T</mi></mrow></msqrt></mrow></math></span>. It was conjectured by Radziwiłł that this distribution breaks down for values of order <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0004.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0004.gif\"}' src=\"//:0\"/><span></span></span><span><img alt=\"\" data-formula-source='{\"type\" : \"mathjax\"}' src=\"//:0\"/><math display=\"inline\"><mrow><mtext>log</mtext><mo> </mo><mo> </mo><mtext>log</mtext><mo> </mo><mi>T</mi></mrow></math></span>, where a multiplicative correction <i>C<sub>k</sub></i> would be present at level <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0005.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0005.gif\"}' src=\"//:0\"/><span></span></span><span><img alt=\"\" data-formula-source='{\"type\" : \"mathjax\"}' src=\"//:0\"/><math display=\"inline\"><mrow><mi>k</mi><mo> </mo><mtext>log</mtext><mo> </mo><mo> </mo><mtext>log</mtext><mo> </mo><mi>T</mi></mrow></math></span>, <i>k</i> > 0. This constant should be the same as the one conjectured by Keating and Snaith for the leading asymptotic of the <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0006.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0006.gif\"}' src=\"//:0\"/><span></span></span><span><img alt=\"\" data-formula-source='{\"type\" : \"mathjax\"}' src=\"//:0\"/><math display=\"inline\"><mrow><mn>2</mn><msup><mrow><mi>k</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msup></mrow></math></span> moment of <i>ζ</i>. In this paper, we provide numerical and theoretical evidence for this conjecture. We propose that this correction has a significant effect on the distribution of the maximum of <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0007.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0007.gif\"}' src=\"//:0\"/><span></span></span><span><img alt=\"\" data-formula-source='{\"type\" : \"mathjax\"}' src=\"//:0\"/><math display=\"inline\"><mrow><mtext>log</mtext><mo> </mo><mo>|</mo><mi>ζ</mi><mo>|</mo></mrow></math></span> in intervals of size <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0008.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0008.gif\"}' src=\"//:0\"/><span></span></span><span><img alt=\"\" data-formula-source='{\"type\" : \"mathjax\"}' src=\"//:0\"/><math display=\"inline\"><mrow><msup><mrow><mrow><mo stretchy=\"false\">(</mo><mo> </mo><mtext>log</mtext><mo> </mo><mi>T</mi><mo stretchy=\"false\">)</mo></mrow></mrow><mi>θ</mi></msup><mo>,</mo><mtext> </mtext><mi>θ</mi><mo>></mo><mn>0</mn></mrow></math></span>. The precision of the prediction enables the numerical detection of <i>C<sub>k</sub></i> even for low <i>T</i>’s of order <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0009.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0009.gif\"}' src=\"//:0\"/><span></span></span><span><img alt=\"\" data-formula-source='{\"type\" : \"mathjax\"}' src=\"//:0\"/><math display=\"inline\"><mrow><mi>T</mi><mo>=</mo><msup><mrow><mrow><mn>10</mn></mrow></mrow><mn>8</mn></msup></mrow></math></span>. A similar correction appears in the large deviations of the Keating–Snaith central limit theorem for the logarithm of the characteristic polynomial of a random unitary matrix, as first proved by Féray, Méliot and Nikeghbali.</p>","PeriodicalId":50464,"journal":{"name":"Experimental Mathematics","volume":"269 ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence of Random Matrix Corrections for the Large Deviations of Selberg’s Central Limit Theorem\",\"authors\":\"E. Amzallag, L.-P. Arguin, E. Bailey, K. Huib, R. Rao\",\"doi\":\"10.1080/10586458.2021.2011806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b></p><p>Selberg’s central limit theorem states that the values of <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0001.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0001.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"mathjax\\\"}' src=\\\"//:0\\\"/><math display=\\\"inline\\\"><mrow><mtext>log</mtext><mo> </mo><mo>|</mo><mi>ζ</mi><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mi mathvariant=\\\"normal\\\">i</mi><mi>τ</mi><mo stretchy=\\\"false\\\">)</mo><mo>|</mo></mrow></math></span>, where <i>τ</i> is a uniform random variable on <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0002.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0002.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"mathjax\\\"}' src=\\\"//:0\\\"/><math display=\\\"inline\\\"><mrow><mo stretchy=\\\"false\\\">[</mo><mi>T</mi><mo>,</mo><mn>2</mn><mi>T</mi><mo stretchy=\\\"false\\\">]</mo></mrow></math></span>, are asymptotically distributed like a Gaussian random variable of mean 0 and standard deviation <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0003.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0003.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"mathjax\\\"}' src=\\\"//:0\\\"/><math display=\\\"inline\\\"><mrow><msqrt><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mtext>log</mtext><mo> </mo><mo> </mo><mtext>log</mtext><mo> </mo><mi>T</mi></mrow></msqrt></mrow></math></span>. It was conjectured by Radziwiłł that this distribution breaks down for values of order <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0004.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0004.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"mathjax\\\"}' src=\\\"//:0\\\"/><math display=\\\"inline\\\"><mrow><mtext>log</mtext><mo> </mo><mo> </mo><mtext>log</mtext><mo> </mo><mi>T</mi></mrow></math></span>, where a multiplicative correction <i>C<sub>k</sub></i> would be present at level <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0005.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0005.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"mathjax\\\"}' src=\\\"//:0\\\"/><math display=\\\"inline\\\"><mrow><mi>k</mi><mo> </mo><mtext>log</mtext><mo> </mo><mo> </mo><mtext>log</mtext><mo> </mo><mi>T</mi></mrow></math></span>, <i>k</i> > 0. This constant should be the same as the one conjectured by Keating and Snaith for the leading asymptotic of the <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0006.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0006.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"mathjax\\\"}' src=\\\"//:0\\\"/><math display=\\\"inline\\\"><mrow><mn>2</mn><msup><mrow><mi>k</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msup></mrow></math></span> moment of <i>ζ</i>. In this paper, we provide numerical and theoretical evidence for this conjecture. We propose that this correction has a significant effect on the distribution of the maximum of <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0007.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0007.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"mathjax\\\"}' src=\\\"//:0\\\"/><math display=\\\"inline\\\"><mrow><mtext>log</mtext><mo> </mo><mo>|</mo><mi>ζ</mi><mo>|</mo></mrow></math></span> in intervals of size <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0008.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0008.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"mathjax\\\"}' src=\\\"//:0\\\"/><math display=\\\"inline\\\"><mrow><msup><mrow><mrow><mo stretchy=\\\"false\\\">(</mo><mo> </mo><mtext>log</mtext><mo> </mo><mi>T</mi><mo stretchy=\\\"false\\\">)</mo></mrow></mrow><mi>θ</mi></msup><mo>,</mo><mtext> </mtext><mi>θ</mi><mo>></mo><mn>0</mn></mrow></math></span>. The precision of the prediction enables the numerical detection of <i>C<sub>k</sub></i> even for low <i>T</i>’s of order <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0009.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0009.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"mathjax\\\"}' src=\\\"//:0\\\"/><math display=\\\"inline\\\"><mrow><mi>T</mi><mo>=</mo><msup><mrow><mrow><mn>10</mn></mrow></mrow><mn>8</mn></msup></mrow></math></span>. A similar correction appears in the large deviations of the Keating–Snaith central limit theorem for the logarithm of the characteristic polynomial of a random unitary matrix, as first proved by Féray, Méliot and Nikeghbali.</p>\",\"PeriodicalId\":50464,\"journal\":{\"name\":\"Experimental Mathematics\",\"volume\":\"269 \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10586458.2021.2011806\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10586458.2021.2011806","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Evidence of Random Matrix Corrections for the Large Deviations of Selberg’s Central Limit Theorem
Abstract
Selberg’s central limit theorem states that the values of , where τ is a uniform random variable on , are asymptotically distributed like a Gaussian random variable of mean 0 and standard deviation . It was conjectured by Radziwiłł that this distribution breaks down for values of order , where a multiplicative correction Ck would be present at level , k > 0. This constant should be the same as the one conjectured by Keating and Snaith for the leading asymptotic of the moment of ζ. In this paper, we provide numerical and theoretical evidence for this conjecture. We propose that this correction has a significant effect on the distribution of the maximum of in intervals of size . The precision of the prediction enables the numerical detection of Ck even for low T’s of order . A similar correction appears in the large deviations of the Keating–Snaith central limit theorem for the logarithm of the characteristic polynomial of a random unitary matrix, as first proved by Féray, Méliot and Nikeghbali.
期刊介绍:
Experimental Mathematics publishes original papers featuring formal results inspired by experimentation, conjectures suggested by experiments, and data supporting significant hypotheses.
Experiment has always been, and increasingly is, an important method of mathematical discovery. (Gauss declared that his way of arriving at mathematical truths was "through systematic experimentation.") Yet this tends to be concealed by the tradition of presenting only elegant, fully developed, and rigorous results.
Experimental Mathematics was founded in the belief that theory and experiment feed on each other, and that the mathematical community stands to benefit from a more complete exposure to the experimental process. The early sharing of insights increases the possibility that they will lead to theorems: An interesting conjecture is often formulated by a researcher who lacks the techniques to formalize a proof, while those who have the techniques at their fingertips have been looking elsewhere. Even when the person who had the initial insight goes on to find a proof, a discussion of the heuristic process can be of help, or at least of interest, to other researchers. There is value not only in the discovery itself, but also in the road that leads to it.