{"title":"紧双曲曲面上的多极值圆盘填料","authors":"Ernesto Girondo, Cristian Reyes","doi":"10.1080/10586458.2022.2075491","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b></p><p>The radius of a packing of metric discs embedded in a compact hyperbolic surface is bounded by an extremal value dependent upon the topology of the surface and the number of discs in the packing. In this paper we discuss the possibility of finding multiple extremal disc-packings within a given surface, determining the combinatorial-arithmetic conditions on the topology of the surface and the number of discs of the packing that allow such a phenomenon to happen. Moreover, we provide explicit examples of surfaces containing multiple extremal packings for each type of packing and each topological type of surface possible. Our construction relies in computer experimentation in two ways: first, by performing numerical computations that suggest certain surfaces as good candidates to contain more than one extremal packing, and second by checking with computer algebra software some lengthy necessary algebraic conditions in certain number fields that prove that the surfaces numerically constructed do indeed contain multiple extremal disc-packings.</p>","PeriodicalId":50464,"journal":{"name":"Experimental Mathematics","volume":"257 ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple Extremal Disc-Packings in Compact Hyperbolic Surfaces\",\"authors\":\"Ernesto Girondo, Cristian Reyes\",\"doi\":\"10.1080/10586458.2022.2075491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b></p><p>The radius of a packing of metric discs embedded in a compact hyperbolic surface is bounded by an extremal value dependent upon the topology of the surface and the number of discs in the packing. In this paper we discuss the possibility of finding multiple extremal disc-packings within a given surface, determining the combinatorial-arithmetic conditions on the topology of the surface and the number of discs of the packing that allow such a phenomenon to happen. Moreover, we provide explicit examples of surfaces containing multiple extremal packings for each type of packing and each topological type of surface possible. Our construction relies in computer experimentation in two ways: first, by performing numerical computations that suggest certain surfaces as good candidates to contain more than one extremal packing, and second by checking with computer algebra software some lengthy necessary algebraic conditions in certain number fields that prove that the surfaces numerically constructed do indeed contain multiple extremal disc-packings.</p>\",\"PeriodicalId\":50464,\"journal\":{\"name\":\"Experimental Mathematics\",\"volume\":\"257 \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10586458.2022.2075491\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10586458.2022.2075491","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Multiple Extremal Disc-Packings in Compact Hyperbolic Surfaces
Abstract
The radius of a packing of metric discs embedded in a compact hyperbolic surface is bounded by an extremal value dependent upon the topology of the surface and the number of discs in the packing. In this paper we discuss the possibility of finding multiple extremal disc-packings within a given surface, determining the combinatorial-arithmetic conditions on the topology of the surface and the number of discs of the packing that allow such a phenomenon to happen. Moreover, we provide explicit examples of surfaces containing multiple extremal packings for each type of packing and each topological type of surface possible. Our construction relies in computer experimentation in two ways: first, by performing numerical computations that suggest certain surfaces as good candidates to contain more than one extremal packing, and second by checking with computer algebra software some lengthy necessary algebraic conditions in certain number fields that prove that the surfaces numerically constructed do indeed contain multiple extremal disc-packings.
期刊介绍:
Experimental Mathematics publishes original papers featuring formal results inspired by experimentation, conjectures suggested by experiments, and data supporting significant hypotheses.
Experiment has always been, and increasingly is, an important method of mathematical discovery. (Gauss declared that his way of arriving at mathematical truths was "through systematic experimentation.") Yet this tends to be concealed by the tradition of presenting only elegant, fully developed, and rigorous results.
Experimental Mathematics was founded in the belief that theory and experiment feed on each other, and that the mathematical community stands to benefit from a more complete exposure to the experimental process. The early sharing of insights increases the possibility that they will lead to theorems: An interesting conjecture is often formulated by a researcher who lacks the techniques to formalize a proof, while those who have the techniques at their fingertips have been looking elsewhere. Even when the person who had the initial insight goes on to find a proof, a discussion of the heuristic process can be of help, or at least of interest, to other researchers. There is value not only in the discovery itself, but also in the road that leads to it.