基于Walsh傅里叶变换的正半线上非均匀双正交小波

Ahmad, Owais, Sheikh, Neyaz A., Ahmad, Mobin
{"title":"基于Walsh傅里叶变换的正半线上非均匀双正交小波","authors":"Ahmad, Owais, Sheikh, Neyaz A., Ahmad, Mobin","doi":"10.1186/s42787-021-00128-5","DOIUrl":null,"url":null,"abstract":"In this article, we introduce the notion of nonuniform biorthogonal wavelets on positive half line. We first establish the characterizations for the translates of a single function to form the Riesz bases for their closed linear span. We provide the complete characterization for the biorthogonality of the translates of scaling functions of two nonuniform multiresolution analysis and the associated biorthogonal wavelet families in $$L^2({\\mathbb {R}}^+)$$ . Furthermore, under the mild assumptions on the scaling functions and the corresponding wavelets associated with nonuniform multiresolution analysis, we show that the wavelets can generate Reisz bases.","PeriodicalId":33345,"journal":{"name":"Journal of the Egyptian Mathematical Society","volume":"63 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonuniform biorthogonal wavelets on positive half line via Walsh Fourier transform\",\"authors\":\"Ahmad, Owais, Sheikh, Neyaz A., Ahmad, Mobin\",\"doi\":\"10.1186/s42787-021-00128-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we introduce the notion of nonuniform biorthogonal wavelets on positive half line. We first establish the characterizations for the translates of a single function to form the Riesz bases for their closed linear span. We provide the complete characterization for the biorthogonality of the translates of scaling functions of two nonuniform multiresolution analysis and the associated biorthogonal wavelet families in $$L^2({\\\\mathbb {R}}^+)$$ . Furthermore, under the mild assumptions on the scaling functions and the corresponding wavelets associated with nonuniform multiresolution analysis, we show that the wavelets can generate Reisz bases.\",\"PeriodicalId\":33345,\"journal\":{\"name\":\"Journal of the Egyptian Mathematical Society\",\"volume\":\"63 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Egyptian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42787-021-00128-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Egyptian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42787-021-00128-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了正半线上非均匀双正交小波的概念。我们首先建立了单个函数平移的特征,以形成其闭线性跨度的Riesz基。我们在$$L^2({\mathbb {R}}^+)$$中提供了两个非均匀多分辨率分析和相关双正交小波族的标度函数转换的双正交性的完整表征。此外,在对非均匀多分辨率分析的尺度函数和相应小波的温和假设下,我们证明了小波可以生成Reisz基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonuniform biorthogonal wavelets on positive half line via Walsh Fourier transform
In this article, we introduce the notion of nonuniform biorthogonal wavelets on positive half line. We first establish the characterizations for the translates of a single function to form the Riesz bases for their closed linear span. We provide the complete characterization for the biorthogonality of the translates of scaling functions of two nonuniform multiresolution analysis and the associated biorthogonal wavelet families in $$L^2({\mathbb {R}}^+)$$ . Furthermore, under the mild assumptions on the scaling functions and the corresponding wavelets associated with nonuniform multiresolution analysis, we show that the wavelets can generate Reisz bases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
18
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信