ZyPR:端到端构建工具和运行时管理器,用于FPGA soc的边缘部分重新配置

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Alex R. Bucknall, Suhaib A. Fahmy
{"title":"ZyPR:端到端构建工具和运行时管理器,用于FPGA soc的边缘部分重新配置","authors":"Alex R. Bucknall, Suhaib A. Fahmy","doi":"https://dl.acm.org/doi/10.1145/3585521","DOIUrl":null,"url":null,"abstract":"<p>Partial reconfiguration (PR) is a key enabler to the design and development of adaptive systems on modern Field Programmable Gate Array (FPGA) Systems-on-Chip (SoCs), allowing hardware to be adapted dynamically at runtime. Vendor-supported PR infrastructure is performance-limited and blocking, drivers entail complex memory management, and software/hardware design requires bespoke knowledge of the underlying hardware. This article presents ZyPR: a complete end-to-end framework that provides high-performance reconfiguration of hardware from within a software abstraction in the Linux userspace, automating the process of building PR applications with support for the Xilinx Zynq and Zynq UltraScale+ architectures, aimed at enabling non-expert application designers to leverage PR for edge applications. We compare ZyPR against traditional vendor tooling for PR management as well as recent open source tools that support PR under Linux. The framework provides a high-performance runtime along with low overhead for its provided abstractions. We introduce improvements to our previous work, increasing the provisioning throughput for PR bitstreams on the Zynq Ultrascale+ by 2× and 5.4× compared to Xilinx’s FPGA Manager.</p>","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"42 14","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZyPR: End-to-end Build Tool and Runtime Manager for Partial Reconfiguration of FPGA SoCs at the Edge\",\"authors\":\"Alex R. Bucknall, Suhaib A. Fahmy\",\"doi\":\"https://dl.acm.org/doi/10.1145/3585521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Partial reconfiguration (PR) is a key enabler to the design and development of adaptive systems on modern Field Programmable Gate Array (FPGA) Systems-on-Chip (SoCs), allowing hardware to be adapted dynamically at runtime. Vendor-supported PR infrastructure is performance-limited and blocking, drivers entail complex memory management, and software/hardware design requires bespoke knowledge of the underlying hardware. This article presents ZyPR: a complete end-to-end framework that provides high-performance reconfiguration of hardware from within a software abstraction in the Linux userspace, automating the process of building PR applications with support for the Xilinx Zynq and Zynq UltraScale+ architectures, aimed at enabling non-expert application designers to leverage PR for edge applications. We compare ZyPR against traditional vendor tooling for PR management as well as recent open source tools that support PR under Linux. The framework provides a high-performance runtime along with low overhead for its provided abstractions. We introduce improvements to our previous work, increasing the provisioning throughput for PR bitstreams on the Zynq Ultrascale+ by 2× and 5.4× compared to Xilinx’s FPGA Manager.</p>\",\"PeriodicalId\":49248,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"volume\":\"42 14\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3585521\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3585521","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

部分重构(PR)是现代现场可编程门阵列(FPGA)片上系统(soc)自适应系统设计和开发的关键,它允许硬件在运行时动态适应。供应商支持的PR基础设施性能有限且阻塞,驱动程序需要复杂的内存管理,软件/硬件设计需要对底层硬件的定制知识。本文介绍了ZyPR:一个完整的端到端框架,从Linux用户空间的软件抽象中提供高性能的硬件重构,自动化构建PR应用程序的过程,支持Xilinx Zynq和Zynq UltraScale+架构,旨在使非专家应用程序设计人员能够利用边缘应用程序的PR。我们将ZyPR与传统的公关管理供应商工具以及最近在Linux下支持公关的开源工具进行比较。该框架提供了一个高性能的运行时,并为其提供的抽象提供了低开销。我们对之前的工作进行了改进,与Xilinx的FPGA Manager相比,Zynq Ultrascale+上PR位流的配置吞吐量提高了2倍和5.4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ZyPR: End-to-end Build Tool and Runtime Manager for Partial Reconfiguration of FPGA SoCs at the Edge

Partial reconfiguration (PR) is a key enabler to the design and development of adaptive systems on modern Field Programmable Gate Array (FPGA) Systems-on-Chip (SoCs), allowing hardware to be adapted dynamically at runtime. Vendor-supported PR infrastructure is performance-limited and blocking, drivers entail complex memory management, and software/hardware design requires bespoke knowledge of the underlying hardware. This article presents ZyPR: a complete end-to-end framework that provides high-performance reconfiguration of hardware from within a software abstraction in the Linux userspace, automating the process of building PR applications with support for the Xilinx Zynq and Zynq UltraScale+ architectures, aimed at enabling non-expert application designers to leverage PR for edge applications. We compare ZyPR against traditional vendor tooling for PR management as well as recent open source tools that support PR under Linux. The framework provides a high-performance runtime along with low overhead for its provided abstractions. We introduce improvements to our previous work, increasing the provisioning throughput for PR bitstreams on the Zynq Ultrascale+ by 2× and 5.4× compared to Xilinx’s FPGA Manager.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Reconfigurable Technology and Systems
ACM Transactions on Reconfigurable Technology and Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.90
自引率
8.70%
发文量
79
审稿时长
>12 weeks
期刊介绍: TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right. Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications. -The board and systems architectures of a reconfigurable platform. -Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity. -Languages and compilers for reconfigurable systems. -Logic synthesis and related tools, as they relate to reconfigurable systems. -Applications on which success can be demonstrated. The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.) In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信