各向异性非局部扩散模型的分析:反常输运分数问题的适定性

IF 1.9 4区 数学 Q1 MATHEMATICS
Marta D’Elia, Mamikon Gulian
{"title":"各向异性非局部扩散模型的分析:反常输运分数问题的适定性","authors":"Marta D’Elia, Mamikon Gulian","doi":"10.4208/nmtma.oa-2022-0001s","DOIUrl":null,"url":null,"abstract":"We analyze the well-posedness of an anisotropic, nonlocal diffusion equation. Establishing an equivalence between weighted and unweighted anisotropic\nnonlocal diffusion operators in the vein of unified nonlocal vector calculus, we apply our analysis to a class of fractional-order operators and present rigorous estimates for the solution of the corresponding anisotropic anomalous diffusion equation. Furthermore, we extend our analysis to the anisotropic diffusion-advection\nequation and prove well-posedness for fractional orders $s ∈ [0.5, 1).$ We also present\nan application of the advection-diffusion equation to anomalous transport of solutes.","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":"11 11","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Anisotropic Nonlocal Diffusion Models: Well-Posedness of Fractional Problems for Anomalous Transport\",\"authors\":\"Marta D’Elia, Mamikon Gulian\",\"doi\":\"10.4208/nmtma.oa-2022-0001s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the well-posedness of an anisotropic, nonlocal diffusion equation. Establishing an equivalence between weighted and unweighted anisotropic\\nnonlocal diffusion operators in the vein of unified nonlocal vector calculus, we apply our analysis to a class of fractional-order operators and present rigorous estimates for the solution of the corresponding anisotropic anomalous diffusion equation. Furthermore, we extend our analysis to the anisotropic diffusion-advection\\nequation and prove well-posedness for fractional orders $s ∈ [0.5, 1).$ We also present\\nan application of the advection-diffusion equation to anomalous transport of solutes.\",\"PeriodicalId\":51146,\"journal\":{\"name\":\"Numerical Mathematics-Theory Methods and Applications\",\"volume\":\"11 11\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Mathematics-Theory Methods and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/nmtma.oa-2022-0001s\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Mathematics-Theory Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/nmtma.oa-2022-0001s","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了一类各向异性非局部扩散方程的适定性。在统一非局部矢量微积分中建立了加权和非加权各向异性非局部扩散算子之间的等价性,并将此分析应用于一类分数阶算子,给出了相应各向异性异常扩散方程解的严格估计。进一步,我们将分析扩展到各向异性扩散-平流方程,并证明了分数阶$s∈[0.5,1]的适定性。$我们也给出了平流-扩散方程在溶质异常输运中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Anisotropic Nonlocal Diffusion Models: Well-Posedness of Fractional Problems for Anomalous Transport
We analyze the well-posedness of an anisotropic, nonlocal diffusion equation. Establishing an equivalence between weighted and unweighted anisotropic nonlocal diffusion operators in the vein of unified nonlocal vector calculus, we apply our analysis to a class of fractional-order operators and present rigorous estimates for the solution of the corresponding anisotropic anomalous diffusion equation. Furthermore, we extend our analysis to the anisotropic diffusion-advection equation and prove well-posedness for fractional orders $s ∈ [0.5, 1).$ We also present an application of the advection-diffusion equation to anomalous transport of solutes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
33
审稿时长
>12 weeks
期刊介绍: Numerical Mathematics: Theory, Methods and Applications (NM-TMA) publishes high-quality original research papers on the construction, analysis and application of numerical methods for solving scientific and engineering problems. Important research and expository papers devoted to the numerical solution of mathematical equations arising in all areas of science and technology are expected. The journal originates from the journal Numerical Mathematics: A Journal of Chinese Universities (English Edition). NM-TMA is a refereed international journal sponsored by Nanjing University and the Ministry of Education of China. As an international journal, NM-TMA is published in a timely fashion in printed and electronic forms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信