Clifford结构,双列曲面和外在曲率

IF 0.5 4区 数学 Q3 MATHEMATICS
Graham Smith
{"title":"Clifford结构,双列曲面和外在曲率","authors":"Graham Smith","doi":"10.1007/s10711-023-00855-2","DOIUrl":null,"url":null,"abstract":"<p>We use Clifford algebras to construct a unified formalism for studying constant extrinsic curvature immersed surfaces in Riemannian and semi-Riemannian 3-manifolds in terms of immersed bilegendrian surfaces in their unitary bundles. As an application, we provide full classifications of both complete and compact immersed bilegendrian surfaces in the unit tangent bundle <span>\\({\\text {U}}\\mathbb {S}^3\\)</span> of the 3-sphere.</p>","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"40 ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clifford structures, bilegendrian surfaces, and extrinsic curvature\",\"authors\":\"Graham Smith\",\"doi\":\"10.1007/s10711-023-00855-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We use Clifford algebras to construct a unified formalism for studying constant extrinsic curvature immersed surfaces in Riemannian and semi-Riemannian 3-manifolds in terms of immersed bilegendrian surfaces in their unitary bundles. As an application, we provide full classifications of both complete and compact immersed bilegendrian surfaces in the unit tangent bundle <span>\\\\({\\\\text {U}}\\\\mathbb {S}^3\\\\)</span> of the 3-sphere.</p>\",\"PeriodicalId\":55103,\"journal\":{\"name\":\"Geometriae Dedicata\",\"volume\":\"40 \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometriae Dedicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-023-00855-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometriae Dedicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-023-00855-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用Clifford代数构造了一个统一的形式,用于研究黎曼和半黎曼3-流形中恒定外曲率浸没曲面在黎曼和半黎曼3-流形中的浸没曲面在黎曼和半黎曼3-流形中的正束浸没曲面。作为一种应用,我们在3球的单位切线束\({\text {U}}\mathbb {S}^3\)上给出了完全和紧致浸没双线曲面的完全分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clifford structures, bilegendrian surfaces, and extrinsic curvature

We use Clifford algebras to construct a unified formalism for studying constant extrinsic curvature immersed surfaces in Riemannian and semi-Riemannian 3-manifolds in terms of immersed bilegendrian surfaces in their unitary bundles. As an application, we provide full classifications of both complete and compact immersed bilegendrian surfaces in the unit tangent bundle \({\text {U}}\mathbb {S}^3\) of the 3-sphere.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometriae Dedicata
Geometriae Dedicata 数学-数学
CiteScore
0.90
自引率
0.00%
发文量
78
审稿时长
4-8 weeks
期刊介绍: Geometriae Dedicata concentrates on geometry and its relationship to topology, group theory and the theory of dynamical systems. Geometriae Dedicata aims to be a vehicle for excellent publications in geometry and related areas. Features of the journal will include: A fast turn-around time for articles. Special issues centered on specific topics. All submitted papers should include some explanation of the context of the main results. Geometriae Dedicata was founded in 1972 on the initiative of Hans Freudenthal in Utrecht, the Netherlands, who viewed geometry as a method rather than as a field. The present Board of Editors tries to continue in this spirit. The steady growth of the journal since its foundation is witness to the validity of the founder''s vision and to the success of the Editors'' mission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信