Anneleen De Schepper, Jeroen Schillewaert, Hendrik Van Maldeghem, Magali Victoor
{"title":"Freudenthal-Tits魔法广场第三排的构造和特征","authors":"Anneleen De Schepper, Jeroen Schillewaert, Hendrik Van Maldeghem, Magali Victoor","doi":"10.1007/s10711-023-00864-1","DOIUrl":null,"url":null,"abstract":"<p>We characterise the varieties appearing in the third row of the Freudenthal–Tits magic square over an arbitrary field, in both the split and non-split version, as originally presented by Jacques Tits in his Habilitation thesis. In particular, we characterise the variety related to the 56-dimensional module of a Chevalley group of exceptional type <span>\\(\\mathsf {E_7}\\)</span> over an arbitrary field. We use an elementary axiom system which is the natural continuation of the one characterising the varieties of the second row of the magic square. We provide an explicit common construction of all characterised varieties as the quadratic Zariski closure of the image of a newly defined affine dual polar Veronese map. We also provide a construction of each of these varieties as the common null set of quadratic forms.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction and characterisation of the varieties of the third row of the Freudenthal–Tits magic square\",\"authors\":\"Anneleen De Schepper, Jeroen Schillewaert, Hendrik Van Maldeghem, Magali Victoor\",\"doi\":\"10.1007/s10711-023-00864-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We characterise the varieties appearing in the third row of the Freudenthal–Tits magic square over an arbitrary field, in both the split and non-split version, as originally presented by Jacques Tits in his Habilitation thesis. In particular, we characterise the variety related to the 56-dimensional module of a Chevalley group of exceptional type <span>\\\\(\\\\mathsf {E_7}\\\\)</span> over an arbitrary field. We use an elementary axiom system which is the natural continuation of the one characterising the varieties of the second row of the magic square. We provide an explicit common construction of all characterised varieties as the quadratic Zariski closure of the image of a newly defined affine dual polar Veronese map. We also provide a construction of each of these varieties as the common null set of quadratic forms.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-023-00864-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-023-00864-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Construction and characterisation of the varieties of the third row of the Freudenthal–Tits magic square
We characterise the varieties appearing in the third row of the Freudenthal–Tits magic square over an arbitrary field, in both the split and non-split version, as originally presented by Jacques Tits in his Habilitation thesis. In particular, we characterise the variety related to the 56-dimensional module of a Chevalley group of exceptional type \(\mathsf {E_7}\) over an arbitrary field. We use an elementary axiom system which is the natural continuation of the one characterising the varieties of the second row of the magic square. We provide an explicit common construction of all characterised varieties as the quadratic Zariski closure of the image of a newly defined affine dual polar Veronese map. We also provide a construction of each of these varieties as the common null set of quadratic forms.