{"title":"有理齐次变异上的反演映射和环面作用","authors":"Alberto Franceschini, Luis E. Solá Conde","doi":"10.1007/s10711-023-00866-z","DOIUrl":null,"url":null,"abstract":"<p>Complex projective algebraic varieties with <span>\\({{\\mathbb {C}}}^*\\)</span>-actions can be thought of as geometric counterparts of birational transformations. In this paper we describe geometrically the birational transformations associated to rational homogeneous varieties endowed with a <span>\\({{\\mathbb {C}}}^*\\)</span>-action with no proper isotropy subgroups.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inversion maps and torus actions on rational homogeneous varieties\",\"authors\":\"Alberto Franceschini, Luis E. Solá Conde\",\"doi\":\"10.1007/s10711-023-00866-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Complex projective algebraic varieties with <span>\\\\({{\\\\mathbb {C}}}^*\\\\)</span>-actions can be thought of as geometric counterparts of birational transformations. In this paper we describe geometrically the birational transformations associated to rational homogeneous varieties endowed with a <span>\\\\({{\\\\mathbb {C}}}^*\\\\)</span>-action with no proper isotropy subgroups.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-023-00866-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-023-00866-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inversion maps and torus actions on rational homogeneous varieties
Complex projective algebraic varieties with \({{\mathbb {C}}}^*\)-actions can be thought of as geometric counterparts of birational transformations. In this paper we describe geometrically the birational transformations associated to rational homogeneous varieties endowed with a \({{\mathbb {C}}}^*\)-action with no proper isotropy subgroups.