{"title":"导出等价和等变约旦分解","authors":"Lucas Ruhstorfer","doi":"10.1090/ert/605","DOIUrl":null,"url":null,"abstract":"Abstract:The Bonnafé–Rouquier equivalence can be seen as a modular analogue of Lusztig’s Jordan decomposition for groups of Lie type. In this paper, we show that this equivalence can be lifted to include automorphisms of the finite group of Lie type. Moreover, we prove the existence of a local version of this equivalence which satisfies similar properties. <hr align=\"left\" noshade=\"noshade\" width=\"200\"/>","PeriodicalId":51304,"journal":{"name":"Representation Theory","volume":"367 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derived equivalences and equivariant Jordan decomposition\",\"authors\":\"Lucas Ruhstorfer\",\"doi\":\"10.1090/ert/605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract:The Bonnafé–Rouquier equivalence can be seen as a modular analogue of Lusztig’s Jordan decomposition for groups of Lie type. In this paper, we show that this equivalence can be lifted to include automorphisms of the finite group of Lie type. Moreover, we prove the existence of a local version of this equivalence which satisfies similar properties. <hr align=\\\"left\\\" noshade=\\\"noshade\\\" width=\\\"200\\\"/>\",\"PeriodicalId\":51304,\"journal\":{\"name\":\"Representation Theory\",\"volume\":\"367 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/ert/605\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/ert/605","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Derived equivalences and equivariant Jordan decomposition
Abstract:The Bonnafé–Rouquier equivalence can be seen as a modular analogue of Lusztig’s Jordan decomposition for groups of Lie type. In this paper, we show that this equivalence can be lifted to include automorphisms of the finite group of Lie type. Moreover, we prove the existence of a local version of this equivalence which satisfies similar properties.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This electronic-only journal is devoted to research in representation theory and seeks to maintain a high standard for exposition as well as for mathematical content.
Representation Theory is an open access journal freely available to all readers and with no publishing fees for authors.