导出等价和等变约旦分解

IF 0.7 3区 数学 Q2 MATHEMATICS
Lucas Ruhstorfer
{"title":"导出等价和等变约旦分解","authors":"Lucas Ruhstorfer","doi":"10.1090/ert/605","DOIUrl":null,"url":null,"abstract":"Abstract:The Bonnafé–Rouquier equivalence can be seen as a modular analogue of Lusztig’s Jordan decomposition for groups of Lie type. In this paper, we show that this equivalence can be lifted to include automorphisms of the finite group of Lie type. Moreover, we prove the existence of a local version of this equivalence which satisfies similar properties. <hr align=\"left\" noshade=\"noshade\" width=\"200\"/>","PeriodicalId":51304,"journal":{"name":"Representation Theory","volume":"367 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derived equivalences and equivariant Jordan decomposition\",\"authors\":\"Lucas Ruhstorfer\",\"doi\":\"10.1090/ert/605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract:The Bonnafé–Rouquier equivalence can be seen as a modular analogue of Lusztig’s Jordan decomposition for groups of Lie type. In this paper, we show that this equivalence can be lifted to include automorphisms of the finite group of Lie type. Moreover, we prove the existence of a local version of this equivalence which satisfies similar properties. <hr align=\\\"left\\\" noshade=\\\"noshade\\\" width=\\\"200\\\"/>\",\"PeriodicalId\":51304,\"journal\":{\"name\":\"Representation Theory\",\"volume\":\"367 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/ert/605\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/ert/605","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要:对于Lie型群,bonnaf - rouquier等价可以看作是Lusztig Jordan分解的模类比。在本文中,我们证明了这个等价可以提升到包含Lie型有限群的自同构。此外,我们还证明了这个等价的一个满足类似性质的局部版本的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derived equivalences and equivariant Jordan decomposition
Abstract:The Bonnafé–Rouquier equivalence can be seen as a modular analogue of Lusztig’s Jordan decomposition for groups of Lie type. In this paper, we show that this equivalence can be lifted to include automorphisms of the finite group of Lie type. Moreover, we prove the existence of a local version of this equivalence which satisfies similar properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Representation Theory
Representation Theory MATHEMATICS-
CiteScore
0.90
自引率
0.00%
发文量
70
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This electronic-only journal is devoted to research in representation theory and seeks to maintain a high standard for exposition as well as for mathematical content. Representation Theory is an open access journal freely available to all readers and with no publishing fees for authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信