求助PDF
{"title":"双曲值范数双复Lebesgue空间的几何特征与不等式","authors":"Erdem Toksoy, Birsen Sağır","doi":"10.1515/gmj-2023-2093","DOIUrl":null,"url":null,"abstract":"In this work, it is assumed that the norm over bicomplex numbers is the hyperbolic (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝔻</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2093_eq_0265.png\" /> <jats:tex-math>{\\mathbb{D}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-valued) norm. In this paper, we provide an overview of bicomplex Lebesgue spaces and investigate some of their geometric properties, including <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>𝔹</m:mi> <m:mo></m:mo> <m:mi>ℂ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2093_eq_0260.png\" /> <jats:tex-math>{\\mathbb{B}\\mathbb{C}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-convexity, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>𝔹</m:mi> <m:mo></m:mo> <m:mi>ℂ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2093_eq_0260.png\" /> <jats:tex-math>{\\mathbb{B}\\mathbb{C}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-strict convexity, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>𝔹</m:mi> <m:mo></m:mo> <m:mi>ℂ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2093_eq_0260.png\" /> <jats:tex-math>{\\mathbb{B}\\mathbb{C}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-uniform convexity. Moreover, the basic inequalities such as <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝔻</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2093_eq_0265.png\" /> <jats:tex-math>{\\mathbb{D}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Hölder’s inequality and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝔻</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2093_eq_0265.png\" /> <jats:tex-math>{\\mathbb{D}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Minkowski inequality for bicomplex Lebesgue spaces are presented, used to show geometric properties.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On geometrical characteristics and inequalities of new bicomplex Lebesgue Spaces with hyperbolic-valued norm\",\"authors\":\"Erdem Toksoy, Birsen Sağır\",\"doi\":\"10.1515/gmj-2023-2093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, it is assumed that the norm over bicomplex numbers is the hyperbolic (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>𝔻</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2093_eq_0265.png\\\" /> <jats:tex-math>{\\\\mathbb{D}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-valued) norm. In this paper, we provide an overview of bicomplex Lebesgue spaces and investigate some of their geometric properties, including <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>𝔹</m:mi> <m:mo></m:mo> <m:mi>ℂ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2093_eq_0260.png\\\" /> <jats:tex-math>{\\\\mathbb{B}\\\\mathbb{C}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-convexity, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>𝔹</m:mi> <m:mo></m:mo> <m:mi>ℂ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2093_eq_0260.png\\\" /> <jats:tex-math>{\\\\mathbb{B}\\\\mathbb{C}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-strict convexity, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>𝔹</m:mi> <m:mo></m:mo> <m:mi>ℂ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2093_eq_0260.png\\\" /> <jats:tex-math>{\\\\mathbb{B}\\\\mathbb{C}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-uniform convexity. Moreover, the basic inequalities such as <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>𝔻</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2093_eq_0265.png\\\" /> <jats:tex-math>{\\\\mathbb{D}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Hölder’s inequality and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>𝔻</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2093_eq_0265.png\\\" /> <jats:tex-math>{\\\\mathbb{D}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Minkowski inequality for bicomplex Lebesgue spaces are presented, used to show geometric properties.\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2093\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2093","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
On geometrical characteristics and inequalities of new bicomplex Lebesgue Spaces with hyperbolic-valued norm
In this work, it is assumed that the norm over bicomplex numbers is the hyperbolic ( 𝔻 {\mathbb{D}} -valued) norm. In this paper, we provide an overview of bicomplex Lebesgue spaces and investigate some of their geometric properties, including 𝔹 ℂ {\mathbb{B}\mathbb{C}} -convexity, 𝔹 ℂ {\mathbb{B}\mathbb{C}} -strict convexity, and 𝔹 ℂ {\mathbb{B}\mathbb{C}} -uniform convexity. Moreover, the basic inequalities such as 𝔻 {\mathbb{D}} -Hölder’s inequality and 𝔻 {\mathbb{D}} -Minkowski inequality for bicomplex Lebesgue spaces are presented, used to show geometric properties.