耦合分数阶Klein-Gordon方程驻波的研究

IF 0.8 4区 数学 Q2 MATHEMATICS
Zhenyu Guo, Xin Zhang
{"title":"耦合分数阶Klein-Gordon方程驻波的研究","authors":"Zhenyu Guo, Xin Zhang","doi":"10.1515/gmj-2023-2089","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper is to deal with the standing wave problems in coupled nonlinear fractional Klein–Gordon equations. First, we establish the constrained minimizations for a single nonlinear fractional Laplace equation. Then we prove the existence of a standing wave with a ground state using a variational argument. Next, applying the potential well argument and the concavity method, we obtain the sharp criterion for blowing up and global existence. Finally, we show the instability of the standing wave.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the standing wave in coupled fractional Klein–Gordon equation\",\"authors\":\"Zhenyu Guo, Xin Zhang\",\"doi\":\"10.1515/gmj-2023-2089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this paper is to deal with the standing wave problems in coupled nonlinear fractional Klein–Gordon equations. First, we establish the constrained minimizations for a single nonlinear fractional Laplace equation. Then we prove the existence of a standing wave with a ground state using a variational argument. Next, applying the potential well argument and the concavity method, we obtain the sharp criterion for blowing up and global existence. Finally, we show the instability of the standing wave.\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2089\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2089","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是处理耦合非线性分数阶Klein-Gordon方程中的驻波问题。首先,我们建立了单个非线性分数阶拉普拉斯方程的约束极小化。然后用变分方法证明了具有基态的驻波的存在性。其次,应用势阱论证和凹度法,得到了爆破和全局存在的尖锐判据。最后,给出了驻波的不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the standing wave in coupled fractional Klein–Gordon equation
Abstract The aim of this paper is to deal with the standing wave problems in coupled nonlinear fractional Klein–Gordon equations. First, we establish the constrained minimizations for a single nonlinear fractional Laplace equation. Then we prove the existence of a standing wave with a ground state using a variational argument. Next, applying the potential well argument and the concavity method, we obtain the sharp criterion for blowing up and global existence. Finally, we show the instability of the standing wave.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信