具有Robin边界条件的非线性Brusselator系统解的存在唯一性

IF 0.8 4区 数学 Q2 MATHEMATICS
Ghassan A. Al-Juaifri, Akil J. Harfash
{"title":"具有Robin边界条件的非线性Brusselator系统解的存在唯一性","authors":"Ghassan A. Al-Juaifri, Akil J. Harfash","doi":"10.1515/gmj-2023-2091","DOIUrl":null,"url":null,"abstract":"The system of Brusselator-type reaction-diffusion equations (RDs) on open bounded convex domains <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"script\">𝒟</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2091_eq_0354.png\" /> <jats:tex-math>{\\mathcal{D}\\subset\\mathbb{R}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>d</m:mi> <m:mo>≤</m:mo> <m:mn>3</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2091_eq_0269.png\" /> <jats:tex-math>{(d\\leq 3)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with Robin boundary conditions (Rbcs) has been mathematically analyzed. The Faedo–Galerkin approach is used to demonstrate the global existence and uniqueness of a weak solution to the system. The weak solution’s higher regularity findings are constructed under more regular conditions on the initial data. In addition, continuous dependence on the initial conditions has been proved.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and uniqueness of solution for the nonlinear Brusselator system with Robin boundary conditions\",\"authors\":\"Ghassan A. Al-Juaifri, Akil J. Harfash\",\"doi\":\"10.1515/gmj-2023-2091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The system of Brusselator-type reaction-diffusion equations (RDs) on open bounded convex domains <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi mathvariant=\\\"script\\\">𝒟</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2091_eq_0354.png\\\" /> <jats:tex-math>{\\\\mathcal{D}\\\\subset\\\\mathbb{R}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>d</m:mi> <m:mo>≤</m:mo> <m:mn>3</m:mn> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2091_eq_0269.png\\\" /> <jats:tex-math>{(d\\\\leq 3)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with Robin boundary conditions (Rbcs) has been mathematically analyzed. The Faedo–Galerkin approach is used to demonstrate the global existence and uniqueness of a weak solution to the system. The weak solution’s higher regularity findings are constructed under more regular conditions on the initial data. In addition, continuous dependence on the initial conditions has been proved.\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2091\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2091","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

开有界凸域上的brusselator型反应扩散方程(RDs)系统 {\mathcal{D}\subset\mathbb{R}^{d}} (d≤3) {(d)\leq 3)} 与Robin边界条件(rbc)进行了数学分析。利用Faedo-Galerkin方法证明了系统弱解的全局存在性和唯一性。弱解的高正则性发现是在初始数据更正则的条件下构造的。此外,还证明了对初始条件的连续依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and uniqueness of solution for the nonlinear Brusselator system with Robin boundary conditions
The system of Brusselator-type reaction-diffusion equations (RDs) on open bounded convex domains 𝒟 d {\mathcal{D}\subset\mathbb{R}^{d}} ( d 3 ) {(d\leq 3)} with Robin boundary conditions (Rbcs) has been mathematically analyzed. The Faedo–Galerkin approach is used to demonstrate the global existence and uniqueness of a weak solution to the system. The weak solution’s higher regularity findings are constructed under more regular conditions on the initial data. In addition, continuous dependence on the initial conditions has been proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信