基于聚烯距离的无边缘计数拓扑指标计算

IF 2.4 3区 化学 Q2 CHEMISTRY, ORGANIC
{"title":"基于聚烯距离的无边缘计数拓扑指标计算","authors":"","doi":"10.1080/10406638.2023.2276244","DOIUrl":null,"url":null,"abstract":"<div><div>Acenes or polyacenes are a group of organic compounds and polycyclic aromatic hydrocarbons consisting of benzene <span><math><mrow><mo>(</mo><mrow><msub><mrow><mi>C</mi></mrow><mn>6</mn></msub></mrow><mrow><msub><mrow><mi>H</mi></mrow><mn>6</mn></msub></mrow><mo>)</mo></mrow></math></span> rings that are linearly fused. They are also the building blocks of nanotubes and graphene and follow the general molecular formula <span><math><mrow><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn><mi>n</mi><mo>+</mo><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>4</mn></mrow></msub></mrow></mrow><mo>.</mo></math></span> Due to the applications of polyacenes in optoelectronics, they are interesting for chemical and electrical engineering researchers. In this article, the general formulas for distance-based topological indices of Szeged, Mostar, and Padmakar-Ivan are determined by SMP-polynomials, which do not require edge counting and this formula work only by having the number of benzene rings in the composition of polyacenes.</div></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":"44 9","pages":"Pages 6302-6313"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation of Topological Indices Based on the Distance of Polyacenes Without Edge Counting\",\"authors\":\"\",\"doi\":\"10.1080/10406638.2023.2276244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Acenes or polyacenes are a group of organic compounds and polycyclic aromatic hydrocarbons consisting of benzene <span><math><mrow><mo>(</mo><mrow><msub><mrow><mi>C</mi></mrow><mn>6</mn></msub></mrow><mrow><msub><mrow><mi>H</mi></mrow><mn>6</mn></msub></mrow><mo>)</mo></mrow></math></span> rings that are linearly fused. They are also the building blocks of nanotubes and graphene and follow the general molecular formula <span><math><mrow><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn><mi>n</mi><mo>+</mo><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>4</mn></mrow></msub></mrow></mrow><mo>.</mo></math></span> Due to the applications of polyacenes in optoelectronics, they are interesting for chemical and electrical engineering researchers. In this article, the general formulas for distance-based topological indices of Szeged, Mostar, and Padmakar-Ivan are determined by SMP-polynomials, which do not require edge counting and this formula work only by having the number of benzene rings in the composition of polyacenes.</div></div>\",\"PeriodicalId\":20303,\"journal\":{\"name\":\"Polycyclic Aromatic Compounds\",\"volume\":\"44 9\",\"pages\":\"Pages 6302-6313\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polycyclic Aromatic Compounds\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1040663823021152\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polycyclic Aromatic Compounds","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1040663823021152","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

苯乙烯或聚苯乙烯是一组有机化合物和多环芳烃,由线性融合的苯(C6H6)环组成。它们也是纳米管的组成部分……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calculation of Topological Indices Based on the Distance of Polyacenes Without Edge Counting
Acenes or polyacenes are a group of organic compounds and polycyclic aromatic hydrocarbons consisting of benzene (C6H6) rings that are linearly fused. They are also the building blocks of nanotubes and graphene and follow the general molecular formula C4n+2H2n+4. Due to the applications of polyacenes in optoelectronics, they are interesting for chemical and electrical engineering researchers. In this article, the general formulas for distance-based topological indices of Szeged, Mostar, and Padmakar-Ivan are determined by SMP-polynomials, which do not require edge counting and this formula work only by having the number of benzene rings in the composition of polyacenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polycyclic Aromatic Compounds
Polycyclic Aromatic Compounds 化学-有机化学
CiteScore
3.70
自引率
20.80%
发文量
412
审稿时长
3 months
期刊介绍: The purpose of Polycyclic Aromatic Compounds is to provide an international and interdisciplinary forum for all aspects of research related to polycyclic aromatic compounds (PAC). Topics range from fundamental research in chemistry (including synthetic and theoretical chemistry) and physics (including astrophysics), as well as thermodynamics, spectroscopy, analytical methods, and biology to applied studies in environmental science, biochemistry, toxicology, and industry. Polycyclic Aromatic Compounds has an outstanding Editorial Board and offers a rapid and efficient peer review process, as well as a flexible open access policy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信