非对称线性椭圆偏微分方程面向目标的自适应有限元优化复杂度

Philipp Bringmann, Maximilian Brunner, Dirk Praetorius, Julian Streitberger
{"title":"非对称线性椭圆偏微分方程面向目标的自适应有限元优化复杂度","authors":"Philipp Bringmann, Maximilian Brunner, Dirk Praetorius, Julian Streitberger","doi":"arxiv-2312.00489","DOIUrl":null,"url":null,"abstract":"We analyze a goal-oriented adaptive algorithm that aims to efficiently\ncompute the quantity of interest $G(u^\\star)$ with a linear goal functional $G$\nand the solution $u^\\star$ to a general second-order nonsymmetric linear\nelliptic partial differential equation. The current state of the analysis of\niterative algebraic solvers for nonsymmetric systems lacks the contraction\nproperty in the norms that are prescribed by the functional analytic setting.\nThis seemingly prevents their application in the optimality analysis of\ngoal-oriented adaptivity. As a remedy, this paper proposes a goal-oriented\nadaptive iteratively symmetrized finite element method (GOAISFEM). It employs a\nnested loop with a contractive symmetrization procedure, e.g., the Zarantonello\niteration, and a contractive algebraic solver, e.g., an optimal multigrid\nsolver. The various iterative procedures require well-designed stopping\ncriteria such that the adaptive algorithm can effectively steer the local mesh\nrefinement and the computation of the inexact discrete approximations. The main\nresults consist of full linear convergence of the proposed adaptive algorithm\nand the proof of optimal convergence rates with respect to both degrees of\nfreedom and total computational cost (i.e., optimal complexity). Numerical\nexperiments confirm the theoretical results and investigate the selection of\nthe parameters.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"40 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal complexity of goal-oriented adaptive FEM for nonsymmetric linear elliptic PDEs\",\"authors\":\"Philipp Bringmann, Maximilian Brunner, Dirk Praetorius, Julian Streitberger\",\"doi\":\"arxiv-2312.00489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze a goal-oriented adaptive algorithm that aims to efficiently\\ncompute the quantity of interest $G(u^\\\\star)$ with a linear goal functional $G$\\nand the solution $u^\\\\star$ to a general second-order nonsymmetric linear\\nelliptic partial differential equation. The current state of the analysis of\\niterative algebraic solvers for nonsymmetric systems lacks the contraction\\nproperty in the norms that are prescribed by the functional analytic setting.\\nThis seemingly prevents their application in the optimality analysis of\\ngoal-oriented adaptivity. As a remedy, this paper proposes a goal-oriented\\nadaptive iteratively symmetrized finite element method (GOAISFEM). It employs a\\nnested loop with a contractive symmetrization procedure, e.g., the Zarantonello\\niteration, and a contractive algebraic solver, e.g., an optimal multigrid\\nsolver. The various iterative procedures require well-designed stopping\\ncriteria such that the adaptive algorithm can effectively steer the local mesh\\nrefinement and the computation of the inexact discrete approximations. The main\\nresults consist of full linear convergence of the proposed adaptive algorithm\\nand the proof of optimal convergence rates with respect to both degrees of\\nfreedom and total computational cost (i.e., optimal complexity). Numerical\\nexperiments confirm the theoretical results and investigate the selection of\\nthe parameters.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"40 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.00489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.00489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了一种面向目标的自适应算法,该算法旨在有效地计算具有线性目标泛函$G$的兴趣量$G(u^\star)$和一般二阶非对称线性椭圆偏微分方程的解$u^\star$。非对称系统的迭代代数解的分析现状缺乏由泛函解析集规定的范数的收缩性。这似乎阻碍了它们在目标导向自适应的最优性分析中的应用。为此,本文提出了一种面向目标的自适应迭代对称有限元法。它采用了一个具有收缩对称过程(例如,Zarantonelloiteration)的内环和一个收缩代数求解器(例如,最优多网格求解器)。各种迭代过程需要设计良好的停止准则,使自适应算法能够有效地指导局部网格细化和不精确离散近似的计算。主要结果包括所提出的自适应算法的完全线性收敛,以及关于自由度和总计算成本(即最优复杂度)的最优收敛率的证明。数值实验验证了理论结果,并对参数的选择进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal complexity of goal-oriented adaptive FEM for nonsymmetric linear elliptic PDEs
We analyze a goal-oriented adaptive algorithm that aims to efficiently compute the quantity of interest $G(u^\star)$ with a linear goal functional $G$ and the solution $u^\star$ to a general second-order nonsymmetric linear elliptic partial differential equation. The current state of the analysis of iterative algebraic solvers for nonsymmetric systems lacks the contraction property in the norms that are prescribed by the functional analytic setting. This seemingly prevents their application in the optimality analysis of goal-oriented adaptivity. As a remedy, this paper proposes a goal-oriented adaptive iteratively symmetrized finite element method (GOAISFEM). It employs a nested loop with a contractive symmetrization procedure, e.g., the Zarantonello iteration, and a contractive algebraic solver, e.g., an optimal multigrid solver. The various iterative procedures require well-designed stopping criteria such that the adaptive algorithm can effectively steer the local mesh refinement and the computation of the inexact discrete approximations. The main results consist of full linear convergence of the proposed adaptive algorithm and the proof of optimal convergence rates with respect to both degrees of freedom and total computational cost (i.e., optimal complexity). Numerical experiments confirm the theoretical results and investigate the selection of the parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信