Lyapunov方程的低秩修正Galerkin方法

Kathryn Lund, Davide Palitta
{"title":"Lyapunov方程的低秩修正Galerkin方法","authors":"Kathryn Lund, Davide Palitta","doi":"arxiv-2312.00463","DOIUrl":null,"url":null,"abstract":"Of all the possible projection methods for solving large-scale Lyapunov\nmatrix equations, Galerkin approaches remain much more popular than\nPetrov-Galerkin ones. This is mainly due to the different nature of the\nprojected problems stemming from these two families of methods. While a\nGalerkin approach leads to the solution of a low-dimensional matrix equation\nper iteration, a matrix least-squares problem needs to be solved per iteration\nin a Petrov-Galerkin setting. The significant computational cost of these\nleast-squares problems has steered researchers towards Galerkin methods in\nspite of the appealing minimization properties of Petrov-Galerkin schemes. In\nthis paper we introduce a framework that allows for modifying the Galerkin\napproach by low-rank, additive corrections to the projected matrix equation\nproblem with the two-fold goal of attaining monotonic convergence rates similar\nto those of Petrov-Galerkin schemes while maintaining essentially the same\ncomputational cost of the original Galerkin method. We analyze the\nwell-posedness of our framework and determine possible scenarios where we\nexpect the residual norm attained by two low-rank-modified variants to behave\nsimilarly to the one computed by a Petrov-Galerkin technique. A panel of\ndiverse numerical examples shows the behavior and potential of our new\napproach.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"40 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-rank-modified Galerkin methods for the Lyapunov equation\",\"authors\":\"Kathryn Lund, Davide Palitta\",\"doi\":\"arxiv-2312.00463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Of all the possible projection methods for solving large-scale Lyapunov\\nmatrix equations, Galerkin approaches remain much more popular than\\nPetrov-Galerkin ones. This is mainly due to the different nature of the\\nprojected problems stemming from these two families of methods. While a\\nGalerkin approach leads to the solution of a low-dimensional matrix equation\\nper iteration, a matrix least-squares problem needs to be solved per iteration\\nin a Petrov-Galerkin setting. The significant computational cost of these\\nleast-squares problems has steered researchers towards Galerkin methods in\\nspite of the appealing minimization properties of Petrov-Galerkin schemes. In\\nthis paper we introduce a framework that allows for modifying the Galerkin\\napproach by low-rank, additive corrections to the projected matrix equation\\nproblem with the two-fold goal of attaining monotonic convergence rates similar\\nto those of Petrov-Galerkin schemes while maintaining essentially the same\\ncomputational cost of the original Galerkin method. We analyze the\\nwell-posedness of our framework and determine possible scenarios where we\\nexpect the residual norm attained by two low-rank-modified variants to behave\\nsimilarly to the one computed by a Petrov-Galerkin technique. A panel of\\ndiverse numerical examples shows the behavior and potential of our new\\napproach.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"40 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.00463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.00463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在所有可能的求解大规模李雅普诺夫矩阵方程的投影方法中,伽辽金方法比petrov -Galerkin方法更受欢迎。这主要是由于这两种方法所产生的预测问题的不同性质。当aGalerkin方法导致每次迭代求解低维矩阵方程时,在Petrov-Galerkin设置中,矩阵最小二乘问题需要每次迭代求解。尽管Petrov-Galerkin格式具有吸引人的最小化特性,但这些最小二乘问题的显著计算成本使研究人员转向Galerkin方法。在本文中,我们引入了一个框架,该框架允许通过对投影矩阵方程问题的低秩加性修正来修改Galerkin方法,其双重目标是获得与Petrov-Galerkin格式相似的单调收敛率,同时保持与原始Galerkin方法基本相同的计算成本。我们分析了框架的适定性,并确定了可能的情况,其中我们期望两个低秩修改变体获得的残差范数与Petrov-Galerkin技术计算的行为相似。一组不同的数值例子显示了我们的新方法的行为和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-rank-modified Galerkin methods for the Lyapunov equation
Of all the possible projection methods for solving large-scale Lyapunov matrix equations, Galerkin approaches remain much more popular than Petrov-Galerkin ones. This is mainly due to the different nature of the projected problems stemming from these two families of methods. While a Galerkin approach leads to the solution of a low-dimensional matrix equation per iteration, a matrix least-squares problem needs to be solved per iteration in a Petrov-Galerkin setting. The significant computational cost of these least-squares problems has steered researchers towards Galerkin methods in spite of the appealing minimization properties of Petrov-Galerkin schemes. In this paper we introduce a framework that allows for modifying the Galerkin approach by low-rank, additive corrections to the projected matrix equation problem with the two-fold goal of attaining monotonic convergence rates similar to those of Petrov-Galerkin schemes while maintaining essentially the same computational cost of the original Galerkin method. We analyze the well-posedness of our framework and determine possible scenarios where we expect the residual norm attained by two low-rank-modified variants to behave similarly to the one computed by a Petrov-Galerkin technique. A panel of diverse numerical examples shows the behavior and potential of our new approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信