离散域上求解抛物型偏微分方程的一个框架

Leticia Mattos Da Silva, Oded Stein, Justin Solomon
{"title":"离散域上求解抛物型偏微分方程的一个框架","authors":"Leticia Mattos Da Silva, Oded Stein, Justin Solomon","doi":"arxiv-2312.00327","DOIUrl":null,"url":null,"abstract":"We introduce a framework for solving a class of parabolic partial\ndifferential equations on triangle mesh surfaces, including the Hamilton-Jacobi\nequation and the Fokker-Planck equation. PDE in this class often have nonlinear\nor stiff terms that cannot be resolved with standard methods on curved triangle\nmeshes. To address this challenge, we leverage a splitting integrator combined\nwith a convex optimization step to solve these PDE. Our machinery can be used\nto compute entropic approximation of optimal transport distances on geometric\ndomains, overcoming the numerical limitations of the state-of-the-art method.\nIn addition, we demonstrate the versatility of our method on a number of linear\nand nonlinear PDE that appear in diffusion and front propagation tasks in\ngeometry processing.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"40 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Framework for Solving Parabolic Partial Differential Equations on Discrete Domains\",\"authors\":\"Leticia Mattos Da Silva, Oded Stein, Justin Solomon\",\"doi\":\"arxiv-2312.00327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a framework for solving a class of parabolic partial\\ndifferential equations on triangle mesh surfaces, including the Hamilton-Jacobi\\nequation and the Fokker-Planck equation. PDE in this class often have nonlinear\\nor stiff terms that cannot be resolved with standard methods on curved triangle\\nmeshes. To address this challenge, we leverage a splitting integrator combined\\nwith a convex optimization step to solve these PDE. Our machinery can be used\\nto compute entropic approximation of optimal transport distances on geometric\\ndomains, overcoming the numerical limitations of the state-of-the-art method.\\nIn addition, we demonstrate the versatility of our method on a number of linear\\nand nonlinear PDE that appear in diffusion and front propagation tasks in\\ngeometry processing.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"40 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.00327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.00327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了在三角形网格表面上求解一类抛物型偏微分方程的框架,包括hamilton - jacobieequation和Fokker-Planck equation。这一类的微分方程通常具有非线性或刚性项,无法用标准方法在弯曲三角网格上求解。为了应对这一挑战,我们利用分裂积分器结合凸优化步骤来解决这些PDE。我们的机器可以用来计算几何域上最优传输距离的熵近似,克服了最先进方法的数值限制。此外,我们在几何处理中的扩散和前传播任务中出现的许多线性和非线性偏微分方程上展示了我们方法的多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Framework for Solving Parabolic Partial Differential Equations on Discrete Domains
We introduce a framework for solving a class of parabolic partial differential equations on triangle mesh surfaces, including the Hamilton-Jacobi equation and the Fokker-Planck equation. PDE in this class often have nonlinear or stiff terms that cannot be resolved with standard methods on curved triangle meshes. To address this challenge, we leverage a splitting integrator combined with a convex optimization step to solve these PDE. Our machinery can be used to compute entropic approximation of optimal transport distances on geometric domains, overcoming the numerical limitations of the state-of-the-art method. In addition, we demonstrate the versatility of our method on a number of linear and nonlinear PDE that appear in diffusion and front propagation tasks in geometry processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信