时变PNP方程的非线性离散格式的存在性、解和线性化迭代法的收敛性

Yang Liu, Shi Shu, Ying Yang
{"title":"时变PNP方程的非线性离散格式的存在性、解和线性化迭代法的收敛性","authors":"Yang Liu, Shi Shu, Ying Yang","doi":"arxiv-2312.00291","DOIUrl":null,"url":null,"abstract":"We establish the existence theory of several commonly used finite element\n(FE) nonlinear fully discrete solutions, and the convergence theory of a\nlinearized iteration. First, it is shown for standard FE, SUPG and\nedge-averaged method respectively that the stiffness matrix is a column\nM-matrix under certain conditions, and then the existence theory of these three\nFE nonlinear fully discrete solutions is presented by using Brouwer's fixed\npoint theorem. Second, the contraction of a commonly used linearized iterative\nmethod-Gummel iteration is proven, and then the convergence theory is\nestablished for the iteration. At last, a numerical experiment is shown to\nverifies the theories.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"40 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Existence the Solution of Nonlinear Discrete Schemes and Convergence of a Linearized Iterative Method for time-dependent PNP Equations\",\"authors\":\"Yang Liu, Shi Shu, Ying Yang\",\"doi\":\"arxiv-2312.00291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish the existence theory of several commonly used finite element\\n(FE) nonlinear fully discrete solutions, and the convergence theory of a\\nlinearized iteration. First, it is shown for standard FE, SUPG and\\nedge-averaged method respectively that the stiffness matrix is a column\\nM-matrix under certain conditions, and then the existence theory of these three\\nFE nonlinear fully discrete solutions is presented by using Brouwer's fixed\\npoint theorem. Second, the contraction of a commonly used linearized iterative\\nmethod-Gummel iteration is proven, and then the convergence theory is\\nestablished for the iteration. At last, a numerical experiment is shown to\\nverifies the theories.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"40 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.00291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.00291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建立了几种常用有限元非线性全离散解的存在性理论和线性化迭代的收敛性理论。首先,分别证明了标准有限元法、SUPG法和边缘平均法的刚度矩阵在一定条件下为列矩阵,然后利用browwer不动点定理给出了这三种有限元非线性全离散解的存在性理论。其次,证明了一种常用的线性化迭代方法—gummel迭代的收缩性,并建立了该迭代的收敛性理论。最后通过数值实验对理论进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Existence the Solution of Nonlinear Discrete Schemes and Convergence of a Linearized Iterative Method for time-dependent PNP Equations
We establish the existence theory of several commonly used finite element (FE) nonlinear fully discrete solutions, and the convergence theory of a linearized iteration. First, it is shown for standard FE, SUPG and edge-averaged method respectively that the stiffness matrix is a column M-matrix under certain conditions, and then the existence theory of these three FE nonlinear fully discrete solutions is presented by using Brouwer's fixed point theorem. Second, the contraction of a commonly used linearized iterative method-Gummel iteration is proven, and then the convergence theory is established for the iteration. At last, a numerical experiment is shown to verifies the theories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信