一类光滑的、可能自适应的非参数共轭估计量,其中包含经验共轭

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Ivan Kojadinovic , Bingqing Yi
{"title":"一类光滑的、可能自适应的非参数共轭估计量,其中包含经验共轭","authors":"Ivan Kojadinovic ,&nbsp;Bingqing Yi","doi":"10.1016/j.jmva.2023.105269","DOIUrl":null,"url":null,"abstract":"<div><p>A broad class of smooth, possibly data-adaptive nonparametric copula<span> estimators that contains empirical Bernstein copulas introduced by Sancetta and Satchell (and thus the empirical beta copula proposed by Segers, Sibuya and Tsukahara) is studied. Within this class, a subclass of estimators that depend on a scalar parameter determining the amount of marginal smoothing and a functional parameter controlling the shape of the smoothing region is specifically considered. Empirical investigations of the influence of these parameters suggest to focus on two particular data-adaptive smooth copula estimators that were found to be uniformly better than the empirical beta copula in all of the considered Monte Carlo experiments. Finally, with future applications to change-point detection in mind, conditions under which related sequential empirical copula processes converge weakly are provided.</span></p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"201 ","pages":"Article 105269"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of smooth, possibly data-adaptive nonparametric copula estimators containing the empirical beta copula\",\"authors\":\"Ivan Kojadinovic ,&nbsp;Bingqing Yi\",\"doi\":\"10.1016/j.jmva.2023.105269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A broad class of smooth, possibly data-adaptive nonparametric copula<span> estimators that contains empirical Bernstein copulas introduced by Sancetta and Satchell (and thus the empirical beta copula proposed by Segers, Sibuya and Tsukahara) is studied. Within this class, a subclass of estimators that depend on a scalar parameter determining the amount of marginal smoothing and a functional parameter controlling the shape of the smoothing region is specifically considered. Empirical investigations of the influence of these parameters suggest to focus on two particular data-adaptive smooth copula estimators that were found to be uniformly better than the empirical beta copula in all of the considered Monte Carlo experiments. Finally, with future applications to change-point detection in mind, conditions under which related sequential empirical copula processes converge weakly are provided.</span></p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"201 \",\"pages\":\"Article 105269\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X2300115X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X2300115X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类光滑的、可能自适应的非参数copula估计量,它包含了由Sancetta和Satchell引入的经验Bernstein copula(以及由Segers、Sibuya和Tsukahara提出的经验beta copula)。在该类中,具体考虑了依赖于确定边缘平滑量的标量参数和控制平滑区域形状的函数参数的估计子类。对这些参数影响的实证研究表明,重点放在两个特定的数据自适应平滑copula估计器上,在所有考虑的蒙特卡罗实验中,它们被发现均匀地优于经验β copula。最后,考虑到未来在变点检测中的应用,给出了相关序贯经验联结过程弱收敛的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A class of smooth, possibly data-adaptive nonparametric copula estimators containing the empirical beta copula

A broad class of smooth, possibly data-adaptive nonparametric copula estimators that contains empirical Bernstein copulas introduced by Sancetta and Satchell (and thus the empirical beta copula proposed by Segers, Sibuya and Tsukahara) is studied. Within this class, a subclass of estimators that depend on a scalar parameter determining the amount of marginal smoothing and a functional parameter controlling the shape of the smoothing region is specifically considered. Empirical investigations of the influence of these parameters suggest to focus on two particular data-adaptive smooth copula estimators that were found to be uniformly better than the empirical beta copula in all of the considered Monte Carlo experiments. Finally, with future applications to change-point detection in mind, conditions under which related sequential empirical copula processes converge weakly are provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信