{"title":"使用基于copula的协方差检验任意数据的独立性和随机性","authors":"Bouchra R. Nasri , Bruno N. Rémillard","doi":"10.1016/j.jmva.2023.105273","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study tests of independence for data with arbitrary distributions in the non-serial case, i.e., for independent and identically distributed random vectors, as well as in the serial case, i.e., for time series. These tests are derived from copula-based covariances and their multivariate extensions using Möbius transforms. We find the asymptotic distributions<span> of these statistics under the null hypothesis of independence or randomness, as well as under contiguous alternatives. This enables us to find out locally most powerful test statistics for some alternatives, whatever the margins. Numerical experiments are performed for Wald’s type combinations of these statistics to assess the finite sample performance.</span></p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"201 ","pages":"Article 105273"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tests of independence and randomness for arbitrary data using copula-based covariances\",\"authors\":\"Bouchra R. Nasri , Bruno N. Rémillard\",\"doi\":\"10.1016/j.jmva.2023.105273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we study tests of independence for data with arbitrary distributions in the non-serial case, i.e., for independent and identically distributed random vectors, as well as in the serial case, i.e., for time series. These tests are derived from copula-based covariances and their multivariate extensions using Möbius transforms. We find the asymptotic distributions<span> of these statistics under the null hypothesis of independence or randomness, as well as under contiguous alternatives. This enables us to find out locally most powerful test statistics for some alternatives, whatever the margins. Numerical experiments are performed for Wald’s type combinations of these statistics to assess the finite sample performance.</span></p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"201 \",\"pages\":\"Article 105273\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23001197\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001197","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Tests of independence and randomness for arbitrary data using copula-based covariances
In this article, we study tests of independence for data with arbitrary distributions in the non-serial case, i.e., for independent and identically distributed random vectors, as well as in the serial case, i.e., for time series. These tests are derived from copula-based covariances and their multivariate extensions using Möbius transforms. We find the asymptotic distributions of these statistics under the null hypothesis of independence or randomness, as well as under contiguous alternatives. This enables us to find out locally most powerful test statistics for some alternatives, whatever the margins. Numerical experiments are performed for Wald’s type combinations of these statistics to assess the finite sample performance.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.