使用基于copula的协方差检验任意数据的独立性和随机性

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Bouchra R. Nasri , Bruno N. Rémillard
{"title":"使用基于copula的协方差检验任意数据的独立性和随机性","authors":"Bouchra R. Nasri ,&nbsp;Bruno N. Rémillard","doi":"10.1016/j.jmva.2023.105273","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study tests of independence for data with arbitrary distributions in the non-serial case, i.e., for independent and identically distributed random vectors, as well as in the serial case, i.e., for time series. These tests are derived from copula-based covariances and their multivariate extensions using Möbius transforms. We find the asymptotic distributions<span> of these statistics under the null hypothesis of independence or randomness, as well as under contiguous alternatives. This enables us to find out locally most powerful test statistics for some alternatives, whatever the margins. Numerical experiments are performed for Wald’s type combinations of these statistics to assess the finite sample performance.</span></p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"201 ","pages":"Article 105273"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tests of independence and randomness for arbitrary data using copula-based covariances\",\"authors\":\"Bouchra R. Nasri ,&nbsp;Bruno N. Rémillard\",\"doi\":\"10.1016/j.jmva.2023.105273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we study tests of independence for data with arbitrary distributions in the non-serial case, i.e., for independent and identically distributed random vectors, as well as in the serial case, i.e., for time series. These tests are derived from copula-based covariances and their multivariate extensions using Möbius transforms. We find the asymptotic distributions<span> of these statistics under the null hypothesis of independence or randomness, as well as under contiguous alternatives. This enables us to find out locally most powerful test statistics for some alternatives, whatever the margins. Numerical experiments are performed for Wald’s type combinations of these statistics to assess the finite sample performance.</span></p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"201 \",\"pages\":\"Article 105273\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23001197\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001197","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了任意分布的数据在非序列情况下的独立性检验,即对于独立和同分布的随机向量,以及在序列情况下的独立性检验,即对于时间序列。这些测试是从基于copula的协方差及其使用Möbius变换的多变量扩展中导出的。我们找到了这些统计量在独立或随机零假设下的渐近分布,以及在相邻选择下的渐近分布。这使我们能够找到一些替代方案的本地最强大的测试统计,无论边际如何。对这些统计量的Wald型组合进行了数值实验,以评估有限样本的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tests of independence and randomness for arbitrary data using copula-based covariances

In this article, we study tests of independence for data with arbitrary distributions in the non-serial case, i.e., for independent and identically distributed random vectors, as well as in the serial case, i.e., for time series. These tests are derived from copula-based covariances and their multivariate extensions using Möbius transforms. We find the asymptotic distributions of these statistics under the null hypothesis of independence or randomness, as well as under contiguous alternatives. This enables us to find out locally most powerful test statistics for some alternatives, whatever the margins. Numerical experiments are performed for Wald’s type combinations of these statistics to assess the finite sample performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信