{"title":"广义普朗克分布的结构性质","authors":"Pakes, Anthony G.","doi":"10.1186/s40488-021-00124-1","DOIUrl":null,"url":null,"abstract":"A family of generalised Planck (GP) laws is defined and its structural properties explored. Sometimes subject to parameter restrictions, a GP law is a randomly scaled gamma law; it arises as the equilibrium law of a perturbed version of the Feller mean reverting diffusion; the density functions can be decreasing, unimodal or bimodal; it is infinitely divisible. It is argued that the GP law is not a generalised gamma convolution. Characterisations are obtained in terms of invariance under random contraction of a weighted version of a related law. The GP law is a particular instance of equilibrium laws obtained from a recursion suggested by a genetic mutation-selection balance model. Some related infinitely divisible laws are exhibited.","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Structural properties of generalised Planck distributions\",\"authors\":\"Pakes, Anthony G.\",\"doi\":\"10.1186/s40488-021-00124-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A family of generalised Planck (GP) laws is defined and its structural properties explored. Sometimes subject to parameter restrictions, a GP law is a randomly scaled gamma law; it arises as the equilibrium law of a perturbed version of the Feller mean reverting diffusion; the density functions can be decreasing, unimodal or bimodal; it is infinitely divisible. It is argued that the GP law is not a generalised gamma convolution. Characterisations are obtained in terms of invariance under random contraction of a weighted version of a related law. The GP law is a particular instance of equilibrium laws obtained from a recursion suggested by a genetic mutation-selection balance model. Some related infinitely divisible laws are exhibited.\",\"PeriodicalId\":52216,\"journal\":{\"name\":\"Journal of Statistical Distributions and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Distributions and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40488-021-00124-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40488-021-00124-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Structural properties of generalised Planck distributions
A family of generalised Planck (GP) laws is defined and its structural properties explored. Sometimes subject to parameter restrictions, a GP law is a randomly scaled gamma law; it arises as the equilibrium law of a perturbed version of the Feller mean reverting diffusion; the density functions can be decreasing, unimodal or bimodal; it is infinitely divisible. It is argued that the GP law is not a generalised gamma convolution. Characterisations are obtained in terms of invariance under random contraction of a weighted version of a related law. The GP law is a particular instance of equilibrium laws obtained from a recursion suggested by a genetic mutation-selection balance model. Some related infinitely divisible laws are exhibited.